The Markup Document Preparation System
(version 1.0.6)
18th Nov 2009

Denis M. Wilson

Aberdeen
Scotland

ABSTRACT

The -markup system is a package of troff document formatting
commands intended to be more comprehensive than the -ms
macros. In addition it attempts to be more structured (using
some ideas from LaTeX), and also to do some fancy things not
available with most troff macro packages. It is intended to make
design flexible, and will ultimately support a number of docu-
ment styles, and make it relatively simple to write new ones. It
works only with groff from version 1.20.

./Intro.mkp -1-



The Markup Formatting System —markup

Table of Contents

Chapter 1. Preliminaries 3
11. Introduction 3
Chapter 2. Document Structure 5
2.1. Overall structure 5
2.2. The “base” Packages 6
Chapter 3. Document Sizes . 7
Chapter 4. Document Units . 8
41. Page Control Package . . . . . . . . . . . . . . . . 8
42. SectionHeadings . . . . . . . . . . . . . . . . .10
43. Paragraphs . . . . . . . . . . . . . . . . ... 12
44. FontControl Package . . . . . . . . . . . . . . . 13
4.5. The Lucida Fonts Package . . . . . . . . . . . . . . 15
4.6. The Predefined Strings Package . . . . . . . . . . . . 16
Chapter 5. Presentations and Displays . . . . . . . . . . . . 17
51. Twocolumnpackage. . . . . . . . . . . . . . . . 17
52. Supportfortables. . . . . . . . . . . . . . . . .17
5.3. Support for equations . . . . . . . . . . . . . . . 18
5.4. TheDisplay Package . . . . . . . . . . . . . . . . 19
55. Thelistpackage . . . . . . . . . . . . . . . . .2
5.6. The Wide paper package A
Chapter 6. Utilities . . A
6.1. TheSpacePackage . . . . . . . . . . . . . . . . 23
6.2. DatePackage . . . . . . . . . . . . . . . . . . 24
6.3. String Manipulation . . . . . . . . . . . . . . . . 25
Chapter 7. Special effects . . . . . . . . . . . . . . . . 26
71. Included and Other Pictures . . . . . . . . . . . . . 26
72. The Verbatim Package . . . . . . . . . . . . . . . 28
73. The BoxesPackage . . . . . . . . . . . . . . . . 28
74. The Dotted line package . . . . . . . . . . . . . . 29
75. Insertpackage . . . . . . . . . . . . . . . . . .30
76. TheDrop Package. . . . . . . . . . . . . . . . . 3
77. The Colour Package . . . . . . . . . . . . . . . . 32
Chapter 8. Moving material . . . . . . . . . . . . . . . 33
81 Cross References . . . . . . . . . . . . . . . . . 33
8.2. TableofContents . . . . . . . . . . . . . . . . . 35
83. KeepsandFloats . . . . . . . . . . . . . . . . . 35
8.4. Thelndexpackage . . . . . . . . . . . . . . . . 36
Chapter9. Classes . . . . . . . . . . . . . . . . . . .37
91. Classes . . N v
9.2. The Article Class < 4

-2- markup.toc



—markup The Markup Formatting System

9.3. TheletterClass . . . . . . . . . . . . . . . . . 38
9.4. TheBookletclass . . . . . . . . . . . . . . . . . 40
Chapter 10. Customised packages . . . . . . . . . . . . . 41
101. Addresslabels. . . . . . . . . . . . . . . . . . 4
Chapter 11. Internals . . . . . . . . . . . . . . . . . . 43
111. The Error Package . . . . . . . . . . . . . . . . 43
11.2. Debugging . . . . . . . . . . . . . . . . . . . 44
11.3. The Stack Package . . . . . . . . . . . . . . . . 44
11.4. The Environment Package . . . . . . . . . . . . . 45
11.5. The Diversion Package . . . . . . . . . . . . . . . 45
Acknowledgements . . . . . . . . . . . . . . . . . . . 46
Index . . . . . . . . .. L0047

Chapter 1
Preliminaries

1.1 Introduction

The -markup system is designed to make structured document markup us-
ing groff simple and flexible. It offers the same kind of facilities as (for exam-
ple) the -ms package, but with several differences

*  The system consists of a number of packages. It was originally intended
to make these independent of each other, but with only a few exceptions
this could not be done, and they work hand-in-hand.

* Some packages offer “fancy” facilities not usually available with troff
macros, such as side insertions, balanced two-column mode, and others.

¢ The source is fully commented, and places where style parameters can
be changed are marked. Each package contains the user documentation
in a form which can be extracted and formatted as in this document. At
some time in the future, maintenance documentation may also included,

./Intro.mkp -3- [§1-§1.1]



The Markup Formatting System —markup

and also documentation explaining how to tune packages for individual
requirements.

The package has been used in reality for several major projects.

The raison d’étre of the package was the trouble the author found in main-
taining many different macro packages; the chief problems being different
user interfaces, and propagating improvements in one package into the
others. This document is typeset using the system it describes.

There is no support for nroff (1), and the system is designed with POST-
SCRIPT output assumed.

The -U option of groff is required as the .sy and .open requests are used in
an unavoidable way.

Directories
Several strings are defined to assist locating files in the system:

MARKUP-DIR where the installed macro packages and classes are held;
EPS-DIR where EPS files are held;
IST-DIR where index style files are held.

1.1.1 Conventions

There are some points which should be noted when creating text for the
markup system:

e  Blank lines may be used freely to improve readability of the source, as
they are ignored except where otherwise stated.

o There are as a matter of principle no default units for length values (ver-
tical and horizontal sizes, distances and position). Units must be used.
It is assumed the user has enough familiarity with basic troff(1) to
know what these are.

1.1.2 Commands

The following is the command to load a package. If a package has been
loaded already it is not loaded a second time. The required optional pack-
ages should be requested before the .BeginDocument command. Base
packages (see below) are loaded on startup.

.UsePackage package [ package ... ]
This loads each argument package in the order given. Those customised
to change something in another package must be loaded afterwards. A
package is loaded once. There may be as many .UsePackage com-
mands as required.

[§1.1-81.1.2] -4- ./Intro.mkp



—markup The Markup Formatting System

Some packages are always loaded. These are known as base packages.

Chapter 2
Document Structure

2.1 Overall structure

The document should start with
.DocumentClass <class>

where <class> is one of a number of document styles, such as letter, book,
article, etc. It should come first; in any case no output text is permitted be-
fore it.

The user may then incorporate a number of optional packages as required,
and adjust any documented parameters if needed. There should be no
printed text in this section, which is called the preamble.

Then should follow

.BeginDocument
The text of the document
.EndDocument

Any text after the . EndDocument command is ignored with a warning.

If the above structure is not adhered to, error messages are generated, or the
document will be malformed.

.DocumentClass class [ options ]
This invokes the appropriate class package, which determines the over-
all style of the document, and also reads in any additional packages

./Doc.mkp -5- [§1.1.2-§2.1]



The Markup Formatting System —markup

specified as other arguments.
The options argument is reserved for future extensions.

In addition, the base name of the file containing this command is used as
the root of auxiliary files with appropriate extensions where required.
Thus for example if the input file is named shares.mkp then the table
of contents file would be shares.toc. The other auxiliary files cur-
rently used are the cross-reference file, with extension . ref, and the in-
dex files, with extensions .idx, .ind, .i1g.

.BeginDocument
This command must come before any output text. All that may precede
it are definitions, including changing any of the standard settings. If
any printed text occurs here a warning is issued. No settings, such as
paper size, point size etc., are actually made until this command is ex-
ecuted.

.EndDocument
This command must come at the end of the document. Such actions as
performing checks that all structures started are also finished, out-
putting left-over floats, index pages if required and so on are done here.
Any text after this will be ignored, with a warning.

2.2 The “base” Packages

Each package is in a file of its own, in a subdirectory MARKUP of the directory
where groff macros are usually found. Each file has an extension .pkg. The
packages in Table 1 on this page are automatically included when -markup
is used (other packages are not). For the benefit of those who wish to write
new packages, each packages’s internal names begin either with the package
name, or a related name shown in the table; users should avoid redefining
these names.

[§2.1-8§2.2] -6-— ./Sizes.mkp



—markup

The Markup Formatting System

Package

Doc
Boxes
Colour
Contents
Crossref
Date
Display
Div
Dotted
Drop
Egn
Env
Error
Fonts
Headings
Index
Insert
Keep
Lists
Page
Para
Pics
Predef
Sizes
Space
Stack
Strings
Tbl
Twocol
Verb

Brief description

Document structure
Overall document structure
Draw boxes round text, etc.
Add colour.
Generate table of contents
Cross referencing
Format dates
Displayed material
Diversion management
Fill line with dots
Dropped capitals package
Support for equations
Environment definitions
Error and warning messages
Font and font-style control
Headings and subheadings for sections
Generate index entries
Put rectangular insertions into text
Floating and other keeps
Enumerated and itemised lists
Page headers and footers
Paragraphs and indented sections
Include pictorial material
Generally useful strings
Sets sizes for paper and point size
Controls spacing (internal use)
Controls nesting (internal use)
String manipulation
Support for tables
Invoke two-column mode
Typeset verbatim text

Reserved prefix

doc-
box-
colr-
cont-
cref-
date-
disp-
div-
dot-
drop-
eqn-
env-
error-
font-
head-
idx-
insert-
keep-
list-
page-
para-
pic-
pre-
size-
space-
stack-
str-
tbl-
mcol-
verb-

./Sizes.mkp

Table 1
Chapter 3
Document Sizes

[§2.2-83]




The Markup Formatting System —markup

This package controls the size and spacing of many global items in the docu-
ment. Its principal use is to set paper and page sizes, but it also sets some
values which are related to these. Most of it is for internal use, but there are
a few user-level commands.

.A4Paper
Sets the size of the sheet to be used as A4. This is the default.
.A5Paper
Sets the sheet size to be A5.
Other paper sizes are not yet defined.
.SetPointSize size
Sets the overall document text point size to be size, which must be one
of 10, 11 or 12. The default is 12-point, as this package is used princi-

pally with POSTSCRIPT output, whose font design size seems to be uni-
versally 12-point.

The paper and point sizes combine to set suitable parameters. Currently
only the combinations (A4, 10- and 12-point), (A5, 10- and 12-point) are de-
fined. They were defined with the appearance of family URWPalladiol
(similar to Palatino) in mind.

Chapter 4
Document Units

4.1 Page Control Package

This package supplies commands for page headers and footers. The header is
the stuff inserted automatically at the top of each page, additional to the
user’s text. Similarly a footer is inserted at the bottom.

[§3-§4.1] -8- ./Page.mkp



—markup The Markup Formatting System

4.1.1 Header styles

The header style can be blank, empty (i.e. no space) or have one line of text.
The header style is defined by a string variable page-opt which is set to the
standard value after each header has been completed. The allowable values
are:

blank The header is the usual width, but with nothing printed;
empty Itis of zero width (starting at the top paper margin);

ord The header is normal. The normal header consists of one line of text, in
a three-part title style, the parts of which are determined by string vari-
ables. These can be set by the user, or the whole line can be done differ-
ently, as it is done by a command.

Anything other than normal must be set for each page.

41.2 Commands

.SetPageHeader name

.SetPageFooter name
These set the macros to print the header and footer contents; the name
argument is the name of the command to be installed.

.SetFooterOpt style [ dist ]
This controls the style and width of the page footer on the current page.
The style is reset to ord at the start of each page. The available styles
are:

ord The footer style is set to ordinary, with the footer title printed. In
this case the argument dist is added to the vertical position where
the footer is sprung (it may be negative). The default values are
ord 0.

blank The footer is blank, with dist as the width: it must be positive
— the minimum possible is is 1 (one unit of device resolution), 1V.

.HideFooter
This removes the page footer; nothing will be printed at the bottom of
the page. Useful in a number of circumstances — e.g. when a page has
displayed material or has to be left completely blank.

.RevealFooter
The footer is set to normal, although in future it may be set to the footer
style prevailing at the last .Hidefooter.
The use of these commands is deprecated, and if there is a better way it will
become documented.

./Page.mkp -9- [§4.1.1-8§4.1.2]



The Markup Formatting System —markup

.NewPage [ args ]
Starts a new page. It should be used only at the end of a completed sec-
tion. By default it causes a break. The arguments come in any order,
and may be

nobreak Do not cause a break.

number Number pages from this one starting at number. number may be
relative, and must be decimal.

.DoublePageSpread
If this is placed on a page, the next page will space after the heading to
the corresponding position. Usually used on an even-numbered page
after a major heading to even the top of text on opposing pages.

.RunningHeader name
Defines name to be the name of a string to be part of the running header;
it is placed in the left or right part of the three-part title. The string is
defined using the .ds mechanism of troff. Since it is up to a class to
make use of this, this is probably not the appropriate place to have this
command. By default it is not used.

.BeginFull1Page

.EndFull1page
These delimit a segment of text starting on a new page (if the current
one is not empty), with no headers or footers, and with the full paper
width available. A new environment is used. It is normally used for
specially set or displayed material, such as including a whole-page pic-
ture. .EndFull1Page restores the environment, but does not start a new
page automatically, nor is the footer restored until the next page.

.OneSided
If a call of this is made then left and right pages are treated the same.

4.2 Section Headings

This package supplies numbered, unnumbered and centred headings for
sections of a document. The naming convention is that Section in a name
is a numbered section, and is never centred or right-adjusted; Heading in a
name means an unnumbered heading, which will be centred if the name ad-
ditionally ends in C, or right adjusted if the name ends in R. Any of these
may be preceded by a number of prefixes Sub to denote subsections or sub-
headings. The current defined is 2, giving three levels.

The other convention is that each argument is on a separate line; thus ar-
guments which contain spaces must be enclosed in quotes. For example:

[§4.1.2-§4.2] -10- ./Headings.mkp



—markup The Markup Formatting System

This is a two-line
right-adjusted subsubheading

is generated by

.SubSubHeadingR "This is a two-1line" "right-adjusted subsubheading"

421 Chapters

This package has a rudimentary chapter heading command .Chapter. This
automatically increases the number of section levels, by adding an extra one
at the start. Numbered sections are displayed with the chapter number
prepended. The first .Chapter must precede any of the .[Sub]Section
commands.

4.2.2 Section ranges

If the string register head-ranges is defined, then the default right page
footer contains the range of the numbered (sub)sections appearing on that

page.

4.2.3 Placing headings in the contents

Sections and headings can be entered into a table of contents automatically
by using the number register head-contents, as in

.nr head-contents 0-2

The first argument of a section heading is placed in the table of contents,
provided its level is at least that of the absolute value of this number register.
If its value is positive, unnumbered headings are placed there too. The top
level is numbered 1. The default value of this register is zero. See the Con-
tents package on page 35.

424 Appendices

If the command .Appendix is used at the top level (at .Section or .Chap-
ter level), then the top-level numbering is started at A then B and so on. The
title style is the same as for the ordinary top-level (if chapters are used, the
word Chapter is replaced by Appendix).

./HeadRedef.mkp ~11- [§4.2-§4.2.4]



The Markup Formatting System —markup

4.2.5 Redefine headings package

If this small optional package (HeadRedef. pkg) is included, all the section-
ing commands are redefined so that if the first argument is -c then the first
line of the heading is placed in the table of contents.

4.3 Paragraphs
4.3.1 Paragraphing Commands

This package defines commands for paragraphing and simple displays, such
as paragraphs with hanging tags, and indented sections. More sophisticated
requirements are met by the Display and List packages.

.Para [ left ]
Starts a new paragraph. If the optional argument left is given, then it
will be a non-indented paragraph. If the optional argument is a number
then the indentation will be that amount.

JIP [ tag [ width ] ]

JIPx [ tag [ width T 1]
This starts an indented paragraph. If one argument is given, then it is
used as a hanging tag for the paragraph. If there is no room, the para-
graph will start on the next line. If a second argument is given, this is
the width of the indent, and will stay in force until a sequence of
.IP[x] commands is terminated by an ordinary .Para command, or
one of the sectioning or heading commands is given. The default is re-
stored at the end of the sequence (e.g. at .Para). .IPx is identical to
. IP but omits the space before the paragraph.

TP [ width ]

.TPx [ width ]
Have the same effect as . IP and . IPx respectively, but the tag is the fol-
lowing line and the optional argument is the indent width.

.RS [ Imarg [ rmarg ] ]
Starts a relatively indented section, with left and right indents which are
given by the Tmarg and rmarg arguments respectively. There are de-
faults.

.RE
Ends a relatively indented section. Relatively indented sections may be
nested.

[§4.2.5-§4.3.1] -12- ./Para.mkp



—markup The Markup Formatting System

4.3.2 Default parameters

These are all number registers.
ParaDefaultTagWidth
the default indent for .IP and . TP.
ParaIndent
the indentation of indented (ordinary) paragraphs.

ParaRelIndent
the default left indent of relatively indented sections. The default right
indent is 0.

ParaSep
the spacing between paragraphs (of all kinds).

4.4 Font Control Package

All the font-style setting commands take 0, 1, 2 or 3 arguments. The effect of
the differing number of arguments is:

0  The style is set globally (and nested). It is cancelled by the .P com-
mand.

The argument is set in the style.
The first is set in the style and the second is appended in the prevailing
style, with no separating space.

3  The second is in the specified style, with the first and third prefixed and
suffixed in the prevailing style.

Within each part, fonts may be changed, provided each such change is done
as \f[font]text\f[] where font is the font or style and text is the text
to be set in the new font. Note that such changes may not be nested.
R[Lalb[cll]
Sets style roman, i.e. normal text face.
I lalblclll
Sets style italic.
Blalbl[cll]l
Sets style bold.
BI[al[b[c]]]
Sets style bold italic.
W lalbl[cll]
Sets text in a fixed-width font. The font currently used is LucidaSans-
Typewriter, if it can be found, otherwise Courier. With this choice,

./Fonts.mkp -13- [§4.3.2-§4.4]



The Markup Formatting System —markup

the text is set slightly smaller, as the x-height of this face is quite large.

.CALLal[b[c]1]]
Sets text in a calligraphic font. The default face is ZapfChanceryMediumI-
talic, a fancy font, too commonly used but universally available. If the
change is in-line, the text is set larger, as this font is quite a small one;
the use is usually purely for effect. This command is also called .ZC for
backwards compatibility (this alias may disappear).

.P This command returns to the previous style or font. Do not use the
command R for this.

SCLalb[cl]]
Sets in small caps. This is often done by reducing the size slightly, but
here it is done by reducing the height of the small-caps letters — a “fake
small caps” style. For example the word SMALLCAPS is obtained by
typing .SC SmallCaps. If expert fonts with real small caps are avail-
able, this can be redefined to use them.

Since SCis not a font-face, the style cannot be set globally.

.MakeSC name text
This defines a string named name to be the small-caps version of the
text. This is more efficient for frequently occurring words in small
caps, such as acronyms. The size used is that at the time of use of the
defined string, not at the time of definition.

.SwitchFamily family
This changes to a new typeface family, saving the previous in a fully
nestable fashion.

.RestoreFamily
This sets the family to that in force before the matching .SwitchFam-
ily.
These two commands will probably move to another package.

.TheFamily
This command interpolates the name of the font family used for the
whole document. Currently it works only for POSTSCRIPT, or for the
devices ascii or latinl, where it gives the device name. WARNING:
this may be replaced by a better method. For example, the installation
may prefer to have font names Times, Garamond, and so on, as long font
names are allowed

[§4.4] -14- ./Fonts.mkp



—markup The Markup Formatting System

44.1 Settable parameters

The fixed-width typeface for the .CW command can be over-ridden by using
.ds font-tt face and .ds font-tt-size num where face is the (usu-
ally) Roman face of the appropriate font family, and num is the percentage
size of the font (or empty for its normal size). The calligraphic font can be
changed by defining .ds font-cal face where face is a suitable font
(calligraphic fonts usually come in one style).

4.5 The Lucida Fonts Package

The Lucida collection contains a wide variety of faces which work well to-
gether, as they are based on a common style. It utilises a family called “Lu-
cida”. The collection contains some expert fonts. Although most of the faces
are a commercial product, it was for the author an exercise in extending the
range of styles that this collection provides, beyond the traditional R, I, B, BI
styles of troff .

Several of the commands in the Fonts package are redefined in order to
make use of the variety of faces. True small caps are available.

4.51 The Defined Styles

Style Description Font
Ordinary styles

R Roman LucidaBright

I Italic LucidaBright-Italic

B Bold LucidaBright-Demi

BI Bold italic LucidaBright-Demiltalic

Extra styles
0 Oblique (2. s(lf}rﬁf)fnan) LucidaBright-Oblique
Small caps . .

SC (inclurgles old-style digits) LucidaBrightSmallcaps

SCB Srr(liar?cﬁ?g;bc?lldd-style digits) LucidaBrightSmallcaps-Demi
Sans Serif group

SR Roman Sans LucidaSans

SI Italic Sans LucidaSans-Italic

SB Bold Sans LucidaSans-Demi

./Lucida.mkp ~15- [§4.4.1-§4.5.1]



The Markup Formatting System —markup
Style Description Font
SEB Extra Bold Sans LucidaSans-Bold
SBI Bold italic Sans LucidaSans-Demiltalic
SEBI  Extra bold italic Sans LucidaSans-Boldltalic
Fixed Width, Sans-serif
TSR Fixed width Roman, sans LucidaSans-Typewriter
TSI Fixed width italic, sans LucidaSans-TypewriterOblique
TSB Fixed width Bold, sans LucidaSans-TypewriterBold
TSBI  Fixed width bold italic, sans
LucidaSans-TypewriterBoldOblique
Fixed Width, Serif
TR fixed width roman, serif LucidaTypewriter
TI Fixed width italic, serif LucidaTypewriterOblique
TB fixed width bold, serif LucidaTypewriterBold
TBI fixed width bold italic, serif =~ LucidaTypewriterBoldOblique
Special fonts for effect
CAL Calligraphic LucidaCalligraphy-Italic
HAND  Handwriting (italic) LucidaHandwriting-Italic
BK Black letter LucidaBlackletter
Informal, casual text
CASR Casuall roman LucidaCasual
(an informal face)
CASI  Casualitalic LucidaCasual-Italic

For each style X there is a corresponding command . X which sets the style as

the .R command.

4.6 The Predefined Strings Package

This package simply defines some
strings for user convenience. They
are shown in the accompanying ta-
ble.

[§4.5.1-§4.6] ~16-

String Printed
bullet .
dots ...
pound £
pounds £
TeX TeX
postscript POSTSCRIPT

./markup.mkp



—markup The Markup Formatting System

Chapter 5
Presentations and Displays

51 Two column package

This package enables two-column mode to be used. The two column mode
may be started and finished anywhere; the end of two-column mode pro-
duces balanced columns (unlike most other two-column mode packages in

troff).

This package uses some global values from the Sizes package.

5.1.1 Commands

. TwoColumn

Finish off single column mode and start two-column mode.

.OneCoTumn

End two-column mode and start one-column mode. If the amount of
two column material does not fill the rest of the page, it will be split into
two roughly equal columns. The result is not perfect, but consideration
is being given to ways of improving it. The column balancing does work
if there are no additional interline spaces in the two-column text.

5.2 Support for tables

The tbl preprocessor may be used to format tables in a manner described in
the tbl documentation. Tables are delimited by the commands .TS and . TE.

Boxed tables are a problem if there is a possibility that they may be split

across a page. Some solutions are these:

If the table is small enough to fit on a page, then the Keep package may
be used.

If the table is too large, then this package offers support for multi-paged
tables, which may also be boxed. It is good practice to arrange for a
multi-paged table to have a running header. This package plagiarises
the -ms package in its method of doing this, by directing the first 1 or

./TblL.mkp 17— [§5-§5.2]



The Markup Formatting System —markup

more formatted table entries to be used as the header at the start of the
table on each page. The user should arrange for the header to be for-
matted as if it were part of the table, simply by writing it as if it were
the initial part of the table. After the lines constituting the header put
the command .TH. The part of the table preceding this will be saved
and used for each page. It is also necessary to indicate to the package
that this is to be done; the .TS command must have the single argu-
ment H.

Warning: if a table with a header is boxed, then the use of the nokeep option
with formatting options will cause the box to be misplaced when there is ex-
tra space inserted before or after the end of the header. This is an artefact of
gthl.

Note that in this package no extra space is inserted before and after the ta-
ble; that is the responsibility of the user or the class.

5.2.1 Commands

IS [ H]
Start the table. The H argument indicates that the part of the table up to
. THis used as a header for multi-paged tables.

.TH
This command indicates that the previously formatted part of the table
is to be used as a header for the table on each page it spreads across.
The H option to . TS must have been given.

.TE
End the table.

.T&
Change the table format mid-stream. This is done entirely by the tbl
preprocessor, and nothing extra is done by this package. It is here
merely to avoid spurious warnings.

5.3 Support for equations

The eqn preprocessor may be used to format equations either inline or dis-
played. This package adds some features to displayed equations, which lie
between the commands .EQ and .EN. See the documentation of egn(1) for
details of the eqn language.

[§5.2-85.3] -18- ./Eqn.mkp



—markup The Markup Formatting System

5.3.1 Commands
.EQ

Start a displayed equation. Any arguments are ignored.

.EN
Finish a displayed equation, and do layout according to the specified
style. A warning is given if the number (if any) does not fit the space.
Caveat: Some styles may fail for subsequent equations in a mark-lineup
sequence, as eqn(1l) apparently makes equations using lineup the same
width as the one using mark.

.EquationStyle args ...
This command sets the style of equation display. Its arguments have the
form
-key value

The arguments can be in any order. Any key that is omitted leaves its previ-
ous value unchanged. The keys are as follows:

Key Type Description Default
-pre number  Space before equation 0
-post number ~ Space after equation 0
-lab string The macro to generate a number or label null
-side string The side on which equation is numbered  right

(left, right)

-align string The position of the equation (left, indent,  left
right, centre)

-indent  number The amount of indenting (with -align in- 0
dent)

The Tab macro must assign the equation number or label to the string regis-
ter eqn-num.

5.4 The Display Package

This package supports the printing of displayed material. Displays may be
nested.

5.41 Commands

.BeginDisplay name [ caption ]

.EndDisplay name
These commands delimit a segment of text which is to be “displayed”.
The style of display is given by the argument name, and it will be

./Display.mkp -19- [§5.3.1-85.4.1]



The Markup Formatting System —markup

followed by the caption caption (if given).
Blank lines are not ignored in displays.
A few display styles are predefined, but it is easy to define new ones.

.DefineDisplay name params ...
This defines a new display called name which can be used as the target
of .{Begin|End}Display. There are 11 parameters:
The space before the display
The space after the display
Left indent
Right indent
If filling to be on (1) or off (0)
Font or style (string)
Make vertical blank space this amount
The tab stop (if used) — all the same
If text to be centred (0), right- (-1) or left-adjusted (1)
The pointsize (may be relative)
11 The vertical spacing (may be relative)
Note that if tabs, ps and vs are the empty string they will not be
changed.

S 000N U R WN R

5.4.2 Predefined displays
These three are currently defined; with usage, more will likely follow.

Text The text is printed in a fixed-width font, is unfilled, and slightly in-
dented on the left. There is a little preceding and following space. In
addition, vertical blank space is printed (unlike the rest of this system),
although one or more consecutive blank lines is displayed as a half-line.

This is useful for preformatted ASCII or LATINT text.

Program This is similar to Text, but also sets tabs at intervals for display-
ing programs indented with tabs.

Emph The text is printed in an emphasised font, has a little space on all four
sides, and is filled. Useful for, say, a quotation from an important docu-
ment or speech.

5.5 The List package

This is useful for generating numbered and tagged lists, which may be
nested. Each list is indented relative to the containing list. A list has several
properties: the indent, the width of the label or tag, the distance separating
the tag from the indented text, and several vertical space separating

[§5.4.1-§5.5] -20- ./Lists.mkp



—markup The Markup Formatting System

distances.

There are two kinds of lists: enumerated, where the tags are an automati-
cally incremented number sequence; and itemised, where the tags are a de-
fault string or user-specified.

.BeginItemise [ args ]

.EndItemise
These delimit a list whose tags are fixed strings, normally a bullet. This
type of list may be nested to depth 3, the default tags varying with the
depth.

For the meaning of args see .BeginList.

.BeginEnumerate [ args ]

.EndEnumerate
These commands delimit a section of text with automatically numbered
items. If one of these environments is nested inside another, a new set
of numbers is started. The style of number printing changes: the outer-
most is roman numbering, then lower case letters, and so on.

For the meaning of args see .BeginList.

Item [ - ] [ string 1]
This starts off a new item in the list, and generates the tag.

In an itemised list, the — must be omitted, and the optional string re-
places the default tag.

In an enumerated list, the string is appended to the number, and If the
first argument is a single ascii hyphen (=) then the number is not ad-
vanced. If you need — as an appendage in an enumerated list, use \&-.

It is safe to use font changes in the tag of Item, so long as they are not
nested. The recommended method is using \f[I]...\f[], for exam-

ple.
JItemx [ - ] [ string ]
This is the same as . Item, but the inter-item spacing is suppressed.

.BeginList name

.EndList name
These delimit a list environment called name. It is an error if the name
on an .EndList command does not match a .BeginList in a nested
fashion. How to define such a list is documented below. Meanwhile
note that the other list styles are applications of this one.

./Lists.mkp -21- [§5.5]



The Markup Formatting System —markup

5.5.1 Arguments

The args option is a list of options of the form -opt [ val ]. Each option
changes one of the default values for the list. They may be in any order.

Option Number of Type Meaning
arguments
-ts 1 number Space before list
-is 1 number Space between items
-w 1 number Width of space for inserting tag
-sep 1 number Separation between tag and text
-e 0 - Make the list an enumerated list
-tag 1 string  The default tag (number format for enum list)
-pre 1 string  String inserted before tag
-post 1 string  String appended to tag
-bs 1 number Space after list
-B 0 - Break to a new line if tag is too wide
-N 0 - The tag may be taken from the next line.

The -N option causes the tag to be taken from the next line only for an
itemised list, and the argument to . Item is empty.

5.5.2 Defining a new list type

To define a list whose name is for example ZIP, define a string Tist-
params-ZIP whose value is the space-separated concatenation of the values
given for the first 9 arguments in the above table — as if they were the argu-
ments to a user-defined command. For the —e item, use 0 for an itemised list,
1 for an enumerated list. The commands . {Begin|End}List ZIP are then
available. The —N and -B facilities still have to be given as arguments to . Be-
ginList.

5.5.3 Special lists
There are several extra examples of the list style:

Null This is an itemised list in which all the properties are zero or empty.
In principle all the other lists could be defined in terms of this, although
currently the method described above is used.

Bold The tags are in a bold font.
FixedWidth The tags are in a constant-width font.

[§5.5.1-§5.5.3] —22- ./Lists.mkp



—markup The Markup Formatting System

5.5.4 Independent numbering

.SetCounter name [ num ]

This command is provided for cases where the .BeginEnumerate com-
mand is not appropriate; e.g. for entries in a table. It sets two strings
name and name- which on subsequent uses will display the numbers 1,
2, .... name- displays only the most recent number. If the num argu-
ment is given, the numbering will start at that. Note: for use in a table it
is necessary to use it twice: before the start of the table, and at the begin-
ning of the table data.

.SkipCounter name num
This advances the value of a counter defined by .SetCounter by the
amount num, without generating any output.

5.6 The Wide paper package

This package simply redefines the text and margins to increase the widths of
text and margins to make more use of the paper area. It is designed for
those who either do not like to destroy trees or who need to see as much as
possible on one sheet.

Chapter 6
Utilities

6.1 The Space Package

The . sp command in troff has two uses:
(1) To leave an amount of vertical space (or remove it); and

(2) To move to a position on the page (used with the | operator).

./Space.mkp -23- [§5.5.4-86.1]



The Markup Formatting System —markup

As they are so different, this package distinguishes between them. There is
an advantage to the use of these, in that they may be redefined in particular
environments, e.g. to change the length of a completed diversion when it is
output.

.Space dist
This acts by default identically to the .sp command. If called by
’Space it will not cause a break. In future, this command may give an
amount of space which may stretch or shrink to improve page layout,
e.g. to avoid ragged bottoms.

.ExtraSpace num
This commmand is for the user who needs extra space inserted. The
space will not shrink or stretch. Its most likely use is in the final tuning
of a finished document.

.Position dist
This moves to the absolute position dist on the page. It does not cause
a break.

6.1.1 Filling Modes

These commands are documented here for convenience.

.Fi110ff

.Fi110n
There commands should occur in matched pairs (which can be nested).
.Fi110ff turns off filling, whereas .Fi110n restores the filling mode
prior to the invocation of its matching .Fi110ff.

6.2 Date Package

6.2.1 Commands

There is one command
.DateStrings year month day [ dw ]

which takes a date in numerical form, and generates a number of strings
which may be used to print the date in a wide variety of formats. The argu-
ments are

year the year. It is taken literally. Older documents using this package
having the year less than 4 digits will have to be corrected.

month  the month, a number from 1 to 12;
day the day of the month, a number from 1 to 31;

[§6.1-8§6.2.1] —-24 - ./Date.mkp



—markup The Markup Formatting System

dw the day of the week, as a number 1 to 7, with 1 representing Sun-
day. This argument is optional; if omitted it will be worked out,
but if given it is believed.

The command
.TodaysDate

sets up the strings for today’s date, using the .DateStrings command, and
gtroff’s internal registers.

6.2.2 Defined strings

All names of days and months are in English.

date-month the month name in full, e.g. February
date-smonth the short name of the month, e.g. Mar

date-year the year (exactly as given);

date-daynum the day of the month as a 1- or 2-digit string;
date-dayname the name of the day in full, e.g. Wednesday;
date-sdayname the short name of the day, e.g. Wed;

date-suf the ordinal suffix of the day number e.g. rd for 23rd;
LongDate example: Wednesday 18th November 2009
ShortDate example: Wed 18th Nov, 2009

PlainDate example: 18-Nov-2009

6.3 String Manipulation

This package has some string manipulation commands. In some cases the
name of these commands is not in the convention of the —markup system,
but are in lower case, to reflect the similarity to certain functions of the C-
language library.

6.3.1 Commands

.ForEach string command
This command executes command with each character of string in turn
as its argument.

.toupper name char
This defines the string name to be the upper-case version of char if ap-
propriate, else sets it to the empty string.

./Strings.mkp -25- [§6.2.1-86.3.1]



The Markup Formatting System —markup

.tolower name char
This does the same as toupper but converts to lower-case.

.strchr reg string char
This defines the number register to be the first position in string of the
character char, or -1 if the character does not occur in the string.
Strings are indexed from 0.

.strrchr reg string char
This defines the number register to be the last position in string of the
character char, or -1 if the character does not occur in the string.

.basename name string
This sets the string name to be the portion of string with everything up
to the last / removed, then everything from the last . removed also.

.StringVal namel name2
This defines stringl to have the value of string2. If this value is un-
defined the number register str-err is set to non-zero, no error mes-
sage is printed.

Chapter 7
Special effects

7.1 Included and Other Pictures

This package imports an illustration and places it at a given point and at a
given size. The only form of file currently dealt with is a POSTSCRIPT file.

Currently the picture must be a POSTSCRIPT EPS file and be properly struc-
tured, with a %%BoundingBox: comment. If the output device is not POST-
SCRIPT a box of the right size and position is drawn instead.

[§6.3.1-§71] -26- ./Pics.mkp



—markup The Markup Formatting System

71.1 Commands

.Picture [opts] file [ width [ height ] ]
This reads in the file which is assumed to contain a graphic in some
known format, and places it within the output document at a position
depending on the opts argument. There are two groups of options: dis-
play and inline; the display options all start on the next line and leave
the current position at the line after the end of the picture. The inline
option leaves the current point the same, regardless of where the picture
is drawn. The display options are:

—C the picture is centred; this is the default.

—-L the picture’s margin is left adjusted;

—R the picture is right adjusted;

—-I d the picture is indented by the distance d;
The inline options are:

—TL x y the picture is positioned so that its top left corner is at point (x,y).
The other inline options are similar with TL being replaced by TR (top

right), BL (bottom left) and BR (bottom right). (nofe: (x,y) is absolute
with respect to the top and left margins of the paper; this may change).

If no option is given, the picture is centred.

If height is not given then the picture will be uniformly scaled and will
have width and height determined by width. If width and height are
given then the scaling will possibly be non-uniform. If width is replaced by
—h then the picture is scaled to have height height.

All distances must have units given; although having a superficial resem-

blance to the PSPIC command of groff, there are no default units, as a matter
of principle.

71.2 Support for ‘pic’

.PS height width

.PE
These commands are used to delimit input to pic(1) which generates the
width and height (what does it do with user-supplied values?). In this
preliminary version, no extra spacing or adjustment is done.

./Pics.mkp —27- [§71.1-§71.2]



The Markup Formatting System —markup

7.1.3 Picture packing

The next few commands are a rather rudimentary collection for placing in-
cluded pictures side by side on the page. They are aligned so that the bot-
tom edges of the pictures are on the same baseline. Each picture is also out-
lined with a thin black line.

.InitPic
This initialises internal storage for holding the picture information.

.SetPic width file
This store up the information for the picture contained in the file file.
width is the desired width of the picture (the height is deduced from
the contents of the file, using equal scaling).

.PlacePic
This draws the stored pictures. The left and right margins are flush
with the edges of the line, and they are spaced by equal gaps; there is no
check that there are at least two pictures. Afterwards the current posi-
tion is after the pictures.

7.2 The Verbatim Package

.BeginVerbatim
This starts a section of the input which will be reproduced exactly, with
no processing. It is especially useful for displaying segments of troff
code. Itis useful in conjunction with a display or indenting package.

.EndVerbatim
Ends the segment of verbatim text begun with .BeginVerbatim.
Warning: if this command is misspelt, the rest of the document will be
wrong.

7.3 The Boxes Package

This package consists of miscellaneous commands to draw boxes, either
round text or a word, or draw a plain box, where, for example a picture
could be pasted in to the final document.

7.3.1 Commands

.BeginBox t b 1T rw
Draw a box round the following text, until . EndBox, The text is format-
ted normally, except for being slightly narrowed to accommodate the
box. The user may supply extra adjustments at the top, bottom left and

[§71.3-§73.1] —28- ./Boxes.mkp



—markup The Markup Formatting System

right (t, b, T, r arguments), or set the thickness of the box outline (w ar-
gument). The arguments are all optional, but the value 0 for any one of
them will be replaced by the default. the defaults are not changed. The
line thickness may be correct only for the -Tps output, at present.
These commands may not be nested.

.EndBox
Terminates the text to be boxed.

.BoxWord word
Draws word inline, with a neat box round it. The box takes into account
the letter shapes, and in general gives a better result than the .BX com-
mand of -ms. There is a restriction: the word may not contain a space.
Use \0 instead.

.MakeBox width height
Draw a box at the current position, finishing at the bottom left of the
box. It may be used inside a diversion. If used in a diversion, and the
diversion is interpolated, the user has to space to the bottom of the box,
using .Space.

.DefBox [ -a ] name width height [ dx [ dy ] ]
This defines a string name which when interpolated will produce a box
of size widthxheight at the current point, returning to the current
point. The box will be shown dx units to the right of the current point
and dy units downwards (defaulting to 0). If the -a argument is used,
the horizontal position is after the box by an extra dx units.

.Cartouche radius width height
This command draws a cartouche shape at the current point. The cur-
rent point afterwards is probably not well-defined. A cartouche is a rec-
tangle (of width width and height height), but the corners are
rounded — a quarter circle with radius radius.

.Box width height
This command draws a box downards from the current point, with width
width and height height.

The MakeBox command is probably more satisfactory.

74 The Dotted line package

This package will eventually do various kinds of dotted and dashed lines.
Some of these will be pure troff constructs; others will use the particular fa-
cilities of an output device, such as POSTSCRIPT. A package for construct-
ing “forms” is under consideration, of which this will be a part.

./Dotted.mkp -29 - [§7.3.1-§74]



The Markup Formatting System —markup

.Dotted word [ char [ space [ endstr ] ] 1]

This prints the word word on a line by itself, and fills the rest of the line
with dots. If the optional second argument is given, then it is the char-
acter to use instead of dots. If the optional third argument is given, then
it is the spacing between dots. If the optional fourth argument is given,
then it is the string to print instead of the right hand dot. If any of the
optional arguments are empty, then the default setting is not changed.
The default spacing is reasonable. With given settings, different lines
filled used this command are guaranteed to have the dots lined up (un-
less things change such as the line length).

It should be noted that the “dot” may in fact be a string.

.SetDotDefaults [ char space endstr ]
With no arguments, this command sets the standard default “dot” char-
acter, spacing, and final character/string for the .Dotted command.
With three arguments, it changes the defaults to the values specified.

7.5 Insert package

This package enables simple rectangular insertions at the right or left of the
document text.

This package does not work inside diversions at present, but that is being
fixed.

7.5.1 Commands

.BeginInsert [ name ]

This starts a section of material to be saved for insertion as described
above. If the optional argument
name is given, then it will be saved
using this name. Note: in this pack-
age the words Teft, right, box and keep are reserved so cannot be
used for names. It is up to the user to determine the width of the text; as
it is processed in its own environment, which has the standard settings
for the document. Line length, etc. may be changed (and will be re-
stored to standard values on the next use).

.EndInsert

This terminates the material to be inserted. It is stored under the given
name (or anonymously if no name is given).

This is an example of an insertion
placed on the right of a page.

[§7.4-§7.5.1] -30- ./Insert.mkp



—markup The Markup Formatting System

.InsertSep top bot side
This specifies the spacing to be used round the insertion, in groff units.
These remain set unless changed. There are default values.

.PTlacelInsert left|right [ name ] [ box ] [ keep ]
This places the saved material in a rectangular space on the left or right.
The arguments may be in any order. If the name is not specified then
the insertion is defined by the most recent .BeginInsert without a
name. A small amount of space is placed round the material (see .In-
sertSep ). The insertion occurs after the line which would contain
the word immediately preceding the command.

If the optional argument box is used it indicates only that an addition
spacing adjustment is used. This is advised if the saved material con-
sists only of a box outline, as box horizontals are drawn on the baseline.

If the optional argument keep is used, then the diversion used to store
the placed material is not removed, as it would be normally. It may then
be used in another .PlaceInsert command. To remove the diversion,
use .RemoveInsert [ name ]. WARNING: this has not yet been im-
plemented.

.CentreHole width height
This leaves a rectangular hole in the text. This command is experimen-
tal, and is not advised if the text is not “dense”, apart from the fact that
it would not look good. It is currently the user’s responsibility to fill the
hole, but that should be done by this package in future (this command
may disappear in favour of a new option (centre) to centre .Pla-
celnsert).

7.6 The Drop Package

This package offers support for various styles of initial dropped capitals.

.Drop word Tines

word is the first word. The initial letter is enlarged and dropped into

the surrounding text and takes 11ines lines. Currently the initial is both
enlarged and stretched upwards. In future the style may be tunable. Cur-
rently it does not work inside a diversion, but that is being fixed.

This is intended for use at the beginning of a non-indented paragraph;

.Yinit word
This is a customised version of . Drop using the yin1it font from TgX (by
Yannis Haralambous). The initial letter is set at 10-point in this font,

./Drop.mkp -31- [§7.5.1-§7.6]



The Markup Formatting System —markup

which must be available in POSTSCRIPT form.

.AugInit word
This is another customised version of .Drop, using the scalable Augs-
burgInitials illuminated capitals font.

7.7 The Colour Package

This package was written before colour was added to troff and will proba-
bly change.

This package is a start at adding colour-changing commands. It works only
on POSTSCRIPT output. Colours are specified in red/green/blue compo-
nents, each in the range [0..1). These are real numbers; they are handed ver-
batim to the POSTSCRIPT interpreter.

7.71 Commands

.FiTlwithColour R G B
This draws a rectangle filling the whole page with the colour RGB.

.DefColour name R G B

This defines name to be a string which when interpolated
to be that with the given RGB components. The colour

range must be ended (on the same page) by the string e-c.

.ColourBox R G B width height
This draws a solid rectangle starting and finishing at the current point.
The colour is given by the RGB arguments, and width and height give
the dimensions.

[§7.6-§7.7.1] -32- ./markup.mkp



—markup The Markup Formatting System

Chapter 8
Moving material

8.1 Cross References

This enables references to be made to other parts of a document. Formatting
may be required more than once to obtain all the references correctly.

8.1.1 Defining references

There is one command

.CrossRef name type
This defines the string name to have a value which may be referenced in
other parts of the document. These names and values are stored in a file
(with extension . ref) for future passes.

The argument type says what kind of value is used. Currently those prede-
fined are
p, page.
Use the page number.
s, section.
Use the section number. They may have a number appended, meaning
that subsections only up to that level are used (number not yet imple-
mented).

The user can define new types; all that is required is for the new type (type
say) to have a corresponding macro

.cref-def-type

which must assign the required value to the string variable cref-val.

The reasons for this indirect approach are: (a) flexibility; (b) in case the ma-
terial is diverted (to get the value from the place the diversion is output
rather than the current place).

./Crossref.mkp -33- [§8-§8.1.1]



The Markup Formatting System —markup

8.1.2 Using references

There are a variety of ways of using references, from simple unadorned val-

ues (including inlined values), to fancy as in "this page", "previous page" and
so on. There are therefore several commands for using cross references.

If the name is not defined a warning is displayed, and a square symbol is
placed in the text. If the value is incorrect, a warning is also displayed. The
formatting must be re-run to get the reference correct (sometimes more
than once).

.UseCrossRef name

\*[UseCrossRefl name]
These insert the value associated with name by .CrossRef into the text.
The second is the inline version of the first.

.Ref [ pre ] name [ post ]
This is replaced by the value that name refers to (if defined), prefixed by
pre if present, and suffixed by post if present.

.PageRef name [ text ]
This generates the appropriate one of “page n”; “this page”; “the previ-
ous page”; or “the next page”. text if given is appended (it is usually
punctuation).

.SetCrossRef name refname
Defines the string name to have the value of the string refname which
should be defined by one of the commands of this package somewhere
in the document.

8.1.3 Deprecated commands

These are commands retained from earlier incarnations of this package, re-
tained for legacy reasons.

.MakeCrossRef Tlabel value
This defines the string Tabel to have the value value, and also makes
the label available as a string register for use in other parts of the docu-
ment. The value supplied is currently up to the user; a common one is
the page number \n[%].

.MakePageRef name
This is the same as .MakeCrossRef, but takes one argument (the
name), the value being the current page number.

[§8.1.2-8§8.1.3] -34 - ./Contents.mkp



—markup The Markup Formatting System

8.2 Table of Contents

This package has facilities for collecting information for a table of contents,
which is normally near the beginning of the document. Then it is usually
necessary to reformat it (possibly more than once) to obtain correct page
numbers. The table may be elsewhere in the document, the most common
alternative being at the end.

The material to be placed in the contents is stored in a file whose name ends
in . toc.

.MakeTocEntry ref entry.
This identifies ref with the string entry which is the one to appear in
the table of contents, along with the page number where this command
appears. Warnings are issued if any entry changes; several runs may be
required before the page numbers are correct.

.TableOfContents
Table of contents may be created by use of the command where the con-
tents are to be placed. If this is anywhere other than at the end, the for-
matting run may have to be repeated; warnings are given. There is a
simple version supplied with the package, but classes may dress it up.

8.3 Keeps and Floats

This package enables material to be kept together on one page, by changing
page if necessary. In this initial version, keeps cannot be used within any
material which has to be diverted, such as within two-column mode.

The usual reason for a keep is to print a self-contained item such as a display
or table, where there are no natural text breaks. If an arbitrary text segment
is kept, note that there will be breaks before and after, and there may be par-
tial words in the wrong place.

8.3.1 Commands

.BeginKeep [ float ]
Starts a section of text to be kept. If the optional argument float is
given, then the text to be kept is stored for insertion wherever room can
be found, while normal text processing continues. The kept material in
both cases is output immediately if there is room, and at the top of the
next page otherwise (provided no other keeps have to be output first).
With a non-floated keep, the order of text is unchanged.

./Keep.mkp ~35- [§8.2-§8.3.1]



The Markup Formatting System —markup

.EndKeep
Ends a section of material to be kept.

8.4 The Index package

The Index package is designed to be used in conjunction with the makeindex
public domain program, and so the conventions are closely tied to those of
that program.

During index creation the file root.idx is created, where root is the same
file basename as is used for cross references and contents. If the index is also
printed in the same run, the file root.ind and root.i1g are also created.
These may all be removed later.

8.4.1 Index creation commands

.Index args

This command simply concatenates its arguments and writes them with
page information to the index file. Spaces are inserted where the user
puts a space and also between arguments. Multiple spaces are com-
pressed. If the page number has to stand out, e.g. as for the main occur-
rence of an index entry, then end the argument list with |B (for bold em-
phasis) or |I (for italic). The B or I may be replaced by any groff font
style or face.

The output has to be post-processed by the program makeindex, and there-
fore certain characters are used for special effects:
! the character used to separate subitems;

@  The character used to specify what is printed (as opposed to the item,
which is used for sorting — if they are different);

| The character used to encapsulate page numbers;

( The character used to begin an explicit page range;

) The character used to end an explicit page range;

#  The “quote” character, used to protect any of the above special charac-
ters.

For more details, see the documentation for the makeindex program.

.MakeIndex [ style ]
This command may be used anywhere after .BeginDocument and acts
simply as a message to instruct .EndDocument to close the index file,
run makeindex and typeset the result. It is done this way in case of in-
serted material which may contain index entries, such as floating keeps.

[§8.3.1-§8.4.1] -36 - ./Index.mkp



—markup The Markup Formatting System

style
This argument gives the style of the index; there is a default. Currently
there is just one style, markup.

If for testing or other reason, it is desired to print the index now, the com-
mand . idx-print may be used.

Chapter 9
Classes

9.1 Classes

Table 3 on this page lists the classes that so far have been implemented. A
later section describes some example user packages.

Package Brief description Reserved prefix
Article Articles art-
Letter Multiple letters let-
Booklet Handbooks and newsletters bkl-
Table 3

9.2 The Article Class

This is one of the predefined document classes. It's main features are a title,
an abstract, one or more authors and their institutions. All of these are op-
tional. They should appear just after . BeginDocument.

./ Article.mkp -37- [§8.4.1-§9.2]



The Markup Formatting System —markup

9.2.1 Commands

.Title
This command takes any number of arguments. Each will be printed
centred on a separate line as part of the document title. Currently no
part of the title appears anywhere else in the document, but in future it
might be available as part of a page header or footer.

.Author name [ institution ]
An author’s name and institution. There may be several authors, each
given by a Author command.

.EndAuthors [ Teft | centre | right J [ row | col ]
This marks the end of the author list; if not present, the authors will not
be displayed. The arguments specify whether the individual authors
have their entries left-, centre- or right-adjusted, and whether the list of
authors is displayed side-by-side (row|col argument) or one under the
other. More authors followed by . EndAuthors may follow. The default
positioning is side-by-side, each centred in its own space.

.BeginAbstract
and

.EndAbstract
together limit an abstract, which will be set in a slightly different way,
preceded by a heading “ABSTRACT”.

9.3 The Letter Class

This class is designed to simplify customising a letter style, with its often
rather peculiar layout. It is probably best used with a package which pre-
customises many of the individual style settings. There is support for logos
and banner headings, multiple letters, default signatory, postscripts and
dates. The overall format of a letter is

.BeginLetter
[ .Addressee ]
[ .Sender ]

.Salutation

. (text of letter)
.Sign
[ .PostScript ]
.EndLetter

. (more letters)

[§9.2.1-§9.3] -38 - ./Letter.mkp



—markup The Markup Formatting System

There are lots of hooks and handles for customising letters; these are not de-
scribed in the user documentation, but are provided for those who wish to
make a customised letter package.

.BeginLetter

.EndLetter
These delimit a single letter. There may be any number of them in one
document. A letter is started with a banner heading at page 1. If a par-
ticular letter requires more than one page then each except the last has a
“turn over” message at the bottom (by default).

.SetDate date
This command sets the string to be placed in the date position to date.
If the argument is today then the date used is “today” — the day that
the letter is formatted. It is in the PlainDate style. If the user wants a
different style, then use the Date package. If the argument is none then
the date is omitted. Note: this should be placed before .Sender as the
latter incorporates the current date, which is “today” by default.

.Salutation name
This is obligatory after .BeginLetter, and generates the “Dear ...” at
the beginning of the letter, using the argument name. The .Post-
script command is not implemented.

”

.Sign [n|f|s|-b bye] [name]
This is obligatory after the text of the letter and before .EndLetter. It
generates the message “Yours sincerely” by default. If one of the argu-
ments is a single letter n, f or s then the the farewell is none, “faith-
fully” or “sincerely” respectively. If an argument is -b then the next ar-
gument bye is used as the signing-off phrase. If a name is given, it is
placed in brackets after room for a signature: use this for formal letters.

.LetterExtra
If there is material after the signature, but before .EndLetter, then use
this; it completes the signature and the user can insert any material. A
new page or extra space is not inserted, such details are up to the re-
quirements of the user.

.Banner
This produces the banner at the top of a letter. The default is a .5 inch
blank space.

.Sender name address
This may occur either once before the first . BeginLetter, in which case
it will be used for all letters, or it may occur once at most within each let-
ter. It formats the name and address of the sender (at the top right of
the letter, under the banner), followed by the date if specified. It may

./Letter.mkp -39 - [§9.3]



The Markup Formatting System —markup

have any number or arguments, including none; each is printed on a
separate line.

.SenderName name
This sets a name to be used as the name in .S1ign if none is given; use
for formal letters only.

.Addressee [ name ] add ...
This typesets the name and address of the person to whom the letter is
being sent at the top left, under the banner. It is not obligatory, but
should appear after .BeginLetter and before .Salutation. Each ar-
gument is printed on a separate line.

.NoTurn
This suppresses the “turn” message at the foot of all but the last page of
a letter. It affects all subsequent letters if it occurs outside a letter, or
only that letter if placed after .BeginlLetter.

9.4 The Booklet class

This is a class designed for making informal booklets, such as newsletters
and handbooks. It is used mainly with customised packages which manipu-
late sizes and styles to suit.

9.4.1 Commands

.TwoPartTitle left right
This command prints a title in two parts, on the left and right respec-
tively, with a horizontal line joining them. Either part may be empty
(then the joining line is extended to the text margin). No additional
spacing is inserted by the command.

.Wrap space header pageopt footeropt
This command acts as a “wrapper” for included “raw” article files. It is
followed by a command .so file.

The first page of the file is decorated as follows: If the pageopt argu-
ment is “newpage”, then the article will start on a new page, and the
header will be used; it is a name indicating which of a set of fancy
strings is used in the “running header”; these are described in those
packages which use them. This argument may, however, have the spe-
cial values
empty

There will be no page header but an amount of space at the top of the
page can be introduced by the space argument.

[§9.3-§9.4.1] -40- ./Booklet.mkp



—markup The Markup Formatting System

bTank
There is a blank page header of the standard width.

- There is an ordinary header, but the running header is not changed.

The footeropt can be one of footer or nofooter, indicating that a page
footer is required or not respectively (on the new page, if taken).

If the space argument is non-zero, then this amount of space is inserted
before the article; usually used between articles on the same page.

.Auth author [ date]
This identifies the author of an article (with optional date of article). It
is designed to go at the end of the article.

Chapter 10
Customised packages

Most of these have been done for the author’s own applications, but are
available in a separate document.

Packages of the Booklet Class
10.1 Address labels

This is a subpackage of the Booklet class, and is designed to print ad-
dresses on sheets of self-adhesive labels. The input is a series of addresses,
one address line per line, with the following markup:

1. The address must be preceded by the line
.de lab-Tlabel

2. The address must be followed by the lines
.lab-print

./Labels.mkp —-41- [§9.4.1-810.1]



The Markup Formatting System —markup

3. The addressee(s) must be first, and be the arguments to the command
. Tab-name — for example
.lab-name "John" "Mary Smith"
4.  The set of addresses must be between the following lines
.lab-begin
.lab-end
These can be done by hand but it it is usually easier to write a script (e.g. for
awk(1)) to convert from whatever address database is used.

A useful string register to set is Tab-debug. If defined this will cause the
label borders to be drawn.

Note: there is an as-yet untraced bug which causes these outlines to be mis-
placed on the last column of the first page only.

.Uselabels make
As the dimensions of self-adhesive brands vary widely, this command is
defined to allow the brand to be selected. If a brand is not known, it is
easy enough to define a new brand, say a brand xxx. A string called
Tab-xxx with 12 numerical values is then defined.

1. Number of rows of labels;

Number of columns of labels;

Left margin — all makes seem to have same right and left margins;
Right margin;

Top margin — top and bottom margins are usually the same, too;
Bottom margin;

The horizontal distance from one label to the next;

The width of a label;

9.  The vertical distance from one label to the one below;

10. The height of a label;

11.  The minumum margin allowed on a label around the print;

12.  The radius of the rounded corners.

PN LN

See the source of this package for the meaning. Note that the outer la-
bels may overlap the non-printable area of the medium; this is not yet
taken into account.

.UsePrinter printer
This command sets the printable area of the paper for a known printer,
and is used because printers vary widely on how near the edges can be
marked. To define a printer, say xxx, define the string Tab-xxx to have
the following 4 space separated numerical parts:

[§10.1] —42 - ./Labels.mkp



—markup The Markup Formatting System

Left unprintable width;

Top unprintable width;

Length of printable horizontal line;
Length of printable vertical line.

L

Chapter 11
Internals

11.1 The Error Package

This package contains error and warning message commands, which will
cause output to the standard error file.

.Error args ...
This prints its arguments and terminates formatting. The first argument
is assumed to be the name of the command calling it. The file and line
number are also printed. If the number register error-verbose is pos-
itive, then a call backtrace is printed if it has the 1-bit set, and if the 2-bit
is set then trap positions are printed.

.Warning args ...
This does the same as .Error but does not exit, and the word Error is
replaced in the output by Warning. If the number register error-ver-
bose has the 4-bit set then then extra diagnostics are produced as for
.Error; this should be used with care as the if there are lots of warn-
ings the diagnostic output will be cluttered.

.SimpleWarning message...
This prints the arguments on standard error, but without the file and
line number. The first argument is not treated specially.

./Debug.mkp ~43 - [§10.1-§11.1]



The Markup Formatting System —markup

11.2 Debugging

This package is mainly for package and class writers who want to print out
number register values.

.Debug [ string [ reg ... 1 1]
This prints a message on standard error, one line per register. The given
string is attached (together with a number) as identification to each
value. The registers are given by name.

.debug-print-mac name
This prints the command name in-line in the output text. For example,
here is the value of the command Box at this point in formatting:

.nr box-boxw \$[1]
.Nnr box-boxh \$[2]
\D’p 0 \n[box-boxh]u \n[box-boxw]u 0 0 —\n[box—boxh]u —\n[box-boxw]u 0’

11.3 The Stack Package

This simulates a stack for general package use. Numbers and strings use a
common stack. It is intended mainly for class and package authors. Troff has
some stacks — the diversion and environment stacks, but nested items also
need a stack, hence this one. It is tested for emptiness at the end of the docu-
ment.

.Stackn name
This stacks the value of number register name. Note: the argument is
the name, not the value.

.UnStackn name
This removes a value from the stack and assigns it to number register
name.

This will work only if the format assigned to the register is the default
decimal digit format.

.Stacks name

.UnStacks name
These are similar to .Stackn and .UnStackn, but deal with string reg-
isters.

.PrintStack
If the stack is not empty, then it is printed on standard error. This is a
debugging aid.

[§11.2-§11.3] —44 - ./Env.mkp



—markup The Markup Formatting System

11.4 The Environment Package

This package was written before the . evc command was added to troff and
will probably change.

This package builds on troff s environments to make them more useful, and
to supply some error checking. WARNING: This package is experimental,
and although it will not disappear, its commands may change, when the best
ways of using them are discovered.

The basic problem with “raw” environments is that they start with the de-
fault troff settings, which almost never what is required.

.NewEnv name
This defines a new environment, with the given name. The attributes
within this environment are those for the document, not the default troff
values. The environment is not entered. It is an error if the named envi-
ronment already exists.

.RenewEnv name
The existing environment has its attributes restored to the standard val-
ues for the document; it is not entered.

.CopyEnv name
The named environment must already exist, and will have the the cur-
rent attributes copied into it (most of them at any rate).

.BeginEnv name
The named environment is entered; it must already exist.

.EndEnv name
This exits from the current environment to the containing one. It is an
error if the current environment is not the one named.

.BeginStandardEnv

.EndStandardEnv
These commands delimit text where the standard settings may be
changed, such as point size, font, line length, etc. Initially the settings
are the standard document settings. After .EndStandardEnv, the pre-
vious environment is restored.

11.5 The Diversion Package

The purpose of this package is to give support for diversions to packages
which require them. It is mainly for the authors of packages and classes.

The problem with diversions is that only one diversion trap is allowed.
This package allows the use of several diversion traps within one diversion.

./Div.mkp —45- [§11.4-§11.5]



The Markup Formatting System —markup

There are no breaks at the start and end of diversions defined in this pack-
age; it is the user’s responsibility to put them where required. Neither is the
diversion interpolated. After all uses of the diversion, it should be removed,
as there is a restriction imposed in this package that a diversion may not
have an existing name.

11.5.1 Commands

.BeginDiversion name
This starts a diversion with the given name. There is a restriction in this
package that there must not be an existing diversion also called name,
whether defined by this command or otherwise.

The user should be aware that there may be a partially formed line
which may end up in the diversion. Use some kind of command which
finishes off a section (such as . Para), if this is undesirable.
.EndDiversion

Finishes the current diversion. There is no check that it is the same as
the one started with the matching .BeginDiversion as there already is
a diversion stack within gtroff. There is no break, as there are circum-
stances when that would be the wrong thing to do.

.SetDiversionTrap position name
Sets a trap to be sprung at position within the current diversion. The
argument name is the user’s command to be called.

The trap is appended to a priority queue of traps for the diversion. The
trap that is sprung first is the one nearest the current position. After use, it is
removed, and next one set (as only one can be active at a time).

Acknowledgements

e James Clark, for his brilliant implementation of the troff family of pro-
grams, and whose macro code I have frequently borrowed;

. Leslie Lamport, for inventing LaTeX, the source of many of my ideas.

[§11.5-§11.5.1] —46 - markup.ind



—markup

A

Adpaper, 8
Abpaper, 8

address labels, 41
appendices, 11
Appendix, 11
Augsburglnitials, 32

B

basename, 26
BeginFullPage, 10
BeginInsert, 30
BeginVerbatim, 28
Box, 29

bullet (»), 16

C

Cartouche, 29
Class
Article, 37
Letter, 38
class
Article, 37
Booklet, 40
Letter, 38
Contents, 35
contents, 35
adding to table, 35
printing, 35
Cross references, 33
CrossRef, 34

D

Date Package, 24

date strings
date-daynum, 25
date-month, 25

markup.ind

The Markup Formatting System

Index

—47 -

date-sdayname, 25
date-smonth, 25
date-year, 25
LongDate, 25
PlainDate, 25
ShortDate, 25
Debug package, 44
DefineDisplay, 20
display
Emph, 20
Program, 20
Text, 20
diversions, 45
Documentation
maintenance, 3
tuning packages, 4
user
contained in package, 3
dots (...), 16
Dotted package, 29
DoublePageSpread, 10
Drop package, 31

E

EndDocument
empty stack, 6
finish diversions, 6
finish environments, 6
output floats, 6
print index, 6
EndFullPage, 10
EndInsert, 30
EndKeep, 36
EndVerbatim, 28
Environment package, 45
EPS file, 26
Error package, 43



The Markup Formatting System —markup

F K
file Keep package, 35
extension
.idx, 36 L
idx, .ind, .ilg, 6
ilg, 36 lab-begin, 42
ind, 36 lab-end, 42
ref, 6,33 lab-label, 41
toc, 35 lab-name, 42
root name, 6 lab-print, 42
FillWithColour, 32 labels, address, 41
font style commands Letter
argument conventions, 13 customising, 39
ForEach, 25 lists
Bold, 22
G Enumerate, 21
FixedWidth, 22
groff, 1 Itemise, 21
Null, 22
H LucidaSans-Typewriter, 13
Haralambous, Yannis, yinit font, 31 M
head-contents, 11
head-ranges, 11 makeindex, 36
heading, alignment, 10 —markup
HideFooter, 9 Preliminaries, 3
ms
I BX, 29
-ms, 1,3
index
special effect characters, 36 N
index entry
in floating keep, 36 names within packages, 6
index style NewPage, 10
default, 37
InitPic, 28 (o)
Insert package, 30
InsertSep, 31 obsolete commands
IP, 12 ZC, 14
IPx, 12 OneColumn, 17

- 48 - markup.ind



—markup The Markup Formatting System

OneSided, 10 Lucida, 15
system base
P Div, 45
Env, 45
packages Space, 6
base, 6 Stack, 6, 44
Boxes, 6, 28 Page package, 8
Colour, 6, 32 Para, 12
Contents, 6, 35 Pics package, 26
Crossref, 6, 33 Picture, 27
Date, 6, 24 Placelnsert, 31
Display, 6, 19 PlacePic, 28
Div, 6 POSTSCRIPT, 14, 26, 29, 32
Doc, 5,6 devps, 29
Dotted, 6, 29 postscript (POSTSCRIPT), 16
Drop, 6, 31 pound (£), 16
Env, 6 pounds (£), 16
Eqn, 6,18 preamble, 5
Error, 6, 43
Fonts, 6,13 R
Headings, 6
Index, 6, 36 RE, 12
Insert, 6, 30 references, 33
Keep, 6, 35 RevealFooter, 9
Lists, 6, 20 RS, 12
Page, 6, 8 RunningHeader, 10
Para, 6,12
Pics, 6, 26 S
Predef, 6, 16
Sizes, 6 Section
Space, 23 Cross references package, 33
Strings, 6, 25 Document structure, 5
Tbl, 6,17 Font control package, 13
Twocol, 6, 17 Indexing, 36
Verb, 6, 28 String manipulation package, 25
customised Support for equations, 18
Labels, 41 Support for tables, 17
Wide, 23 The List package, 20
optional section headings, 10
Debug, 44 SetFooterOpt, 9
Headings, 10 SetPageFooter, 9
HeadRedef, 12

markup.ind —-49 —



The Markup Formatting System

SetPageHeader, 9
SetPic, 28
SetPointSize, 8
Sizes package, 17
small caps, 14
strchr, 26
strings
bullet (o), 16
dots (...), 16
pound (£), 16
pounds (£), 16
TeX (TgX), 16
StringVal, 26
strrchr, 26
Style parameter
changing, 3

T

tables
boxed, 17
header, 17
multi-paged, 17
TeX (TgX), 16
tolower, 26
toupper, 25
TP, 12
TPx, 12
Twocol package, 17
TwoColumn, 17

U

UseLabels, 42

UsePrinter, 42

User commands
Ad4Paper, 8
A5Paper, 8
Addressee, 40
Appendix, 11
AugInit, 32
Auth, 41

—-50-

—markup

Author, 38

BI, 13

B, 13

Banner, 39
BeginAbstract, 38
BeginBox, 28
BeginDisplay, 19
BeginDiversion, 46
BeginDocument, 6, 36
BeginEnumerate, 21
BeginEnv, 45
BeginFull1Page, 10
BeginInsert, 30
BeginItemise, 21
BeginKeep, 35
BeginLetter, 39
BeginList, 21
BeginStandardEnv, 45
BeginVerbatim, 28
BoxWord, 29

Box, 29

CAL, 14

Cw, 13
Cartouche, 29
Chapter, 11
ColourBox, 32
CopyEnv, 45
CrossRef, 33
DateStrings, 24
DefBox, 29
DefColour, 32
DefineDisplay, 20
DocumentClass, 5
Dotted, 30
DoubTePageSpread, 10
Drop, 31

EN, 19

EQ, 19
EndAbstract, 38
EndAuthors, 38
EndBox, 28

markup.ind



—markup

EndDisplay, 19
EndDiversion, 46
EndDocument, 6, 36
EndEnumerate, 21
EndEnv, 45
EndFul1Page, 10
EndInsert, 30
EndItemise, 21
EndKeep, 36
EndLetter, 39
EndList, 21
EndStandardEnv, 45
EndVerbatim, 28
EquationStyle, 19
Error, 43
ExtraSpace, 24
Fi110ff, 24
Fi110n, 24
Fi1TwithCoTour, 32
ForEach, 25
Heading, 10
HideFooter,9
IP,12

IPx, 12

I,13

Index, 36
InitPic,28
InsertSep, 31
Item, 21
Itemx, 21
LetterExtra, 39
MakeBox, 29
MakeCrossRef, 34
MakeIndex, 36
MakePageRef, 34
MakeSC, 14
MakeTocEntry, 35
NewEnv, 45
NewPage, 10
NoTurn, 40
OneColumn, 17

markup.ind

—51—

The Markup Formatting System

OneSided, 10

PE, 27

PS, 27

P,14

PageRef, 34
Para, 12
Picture, 27
PlacelInsert, 31
PlacePic, 28
PlainDate, 39
PrintStack, 44
RE, 12

RS, 12

R, 13

Ref, 34
RenewEnv, 45
RestoreFamily, 14
RevealFooter, 9
RunningHeader, 10
SC, 14
Salutation, 39
Section, 10
SenderName, 40
Sender, 39
SetCounter, 23
SetCrossRef, 34
SetDate, 39
SetDiversionTrap, 46
SetDotDefaults, 30
SetFooterOpt, 9
SetPageFooter, 9
SetPageHeader, 9
SetPic, 28
SetPointSize, 8
Sign, 39
SimpTeWarning, 43
SkipCounter, 23
Space, 24
Stackn, 44
Stacks, 44
StringVal, 26



The Markup Formatting System

SwitchFamily, 14
T&, 18

TE, 18

TH, 18

TP, 12

TPx, 12

TS, 18
TableOfContents, 35
TheFamily, 14
TitTe, 38
TodaysDate, 25
TwoColumn, 17
TwoPartTitle, 40
UnStackn, 44
UnStacks, 44
UseCrossRefl, 34
UseCrossRef, 34
UselLabels, 42
UsePackage, 4, 38
UsePrinter, 42
Warning, 43
Wrap, 40

Yinit, 31
basename, 26
debug-print-mac, 44
debug, 44

e-c,32
idx-print, 37
Tab-begin, 42
Tab-end, 42

52—

—markup

Tab-Tabel, 41
Tab-name, 42
Tab-print, 42
strchr, 26
strrchr, 26
tolower, 26
toupper, 25

\'%

variables
ParaDefaultTagWidth, 13
Paralndent, 13
ParaRellndent, 13
ParaSep, 13

Verb package, 28

W
Wilson, Denis M., 1

Y

yinit font, by Yannis Haralambous,

31

Z
ZapfChanceryMediumltalic, 14



