The Markup Document Preparation System
(version 1.0.6)
18th Nov 2009

Denis M. Wilson

Aberdeen
Scotland

ABSTRACT

The -markup system is a package of troff document formatting commands in-
tended to be more comprehensive than the -ms macros. In addition it attempts
to be more structured (using some ideas from LaTeX), and also to do some
fancy things not available with most troff macro packages. It is intended to
make design flexible, and will ultimately support a number of document
styles, and make it relatively simple to write new ones. It works only with groff
from version 1.20.

./Intro.mkp -1-

The Markup Formatting System

Table of Contents

Chapter 1. Preliminaries .3 7.2. The Verbatim Package .
11. Introduction . .3 7.3. The Boxes Package .
Chapter 2. Document Structure . 4 74. The Dotted line package .
2.1. Overall structure . . 4 75. Insert package
2.2. The “base” Packages .5 7.6. The Drop Package
Chapter 3. Document Sizes .5 7.7. The Colour Package
Chapter 4. Document Units .7 Chapter 8. Moving material .
41. Page Control Package .7 8.1. Cross References
4.2. Section Headings . . 8 8.2. Table of Contents
43. Paragraphs9 8.3. Keeps and Floats
4.4. Font Control Package . 10 8.4. The Index package .
4.5. The Lucida Fonts Package . 11 Chapter 9. Classes
4.6. The Predefined Strings Package. 13 91. Classes . . .
Chapter 5. Presentations and Displays. 13 9.2. The Article Class
51. Two column package 13 9.3. The Letter Class .
5.2. Support for tables 13 9.4. The Booklet class . .o
5.3. Support for equations 14 Chapter 10. Customised packages .
5.4. The Display Package 15 10.1. Address labels .
55. TheListpackage 16 Chapter 11. Internals
5.6. The Wide paper package .. 18 111. The Error Package .
Chapter 6. Utilities 18 11.2. Debugging . .
6.1. The Space Package 18 11.3. The Stack Package . .o
6.2. DatePackage. 19 11.4. The Environment Package .
6.3. String Manipulation 19 11.5. The Diversion Package .
Chapter 7. Special effects 20 Acknowledgements .
71. Included and Other Pictures . 20 Index .o

—markup

21
22
22
23
24
24
25
25
26
26
27
28
28
28
29
30
31
31
32
32
33
33
33
34
35
36

-2- ./Intro.mkp

—markup The Markup Formatting System

Chapter 1
Preliminaries

1.1 Introduction

The —-markup system is designed to make structured document markup using groff simple and
flexible. It offers the same kind of facilities as (for example) the -ms package, but with several
differences

e The system consists of a number of packages. It was originally intended to make these in-
dependent of each other, but with only a few exceptions this could not be done, and they
work hand-in-hand.

e Some packages offer “fancy” facilities not usually available with froff macros, such as side
insertions, balanced two-column mode, and others.

* The source is fully commented, and places where style parameters can be changed are
marked. Each package contains the user documentation in a form which can be extracted
and formatted as in this document. At some time in the future, maintenance documenta-
tion may also included, and also documentation explaining how to tune packages for indi-
vidual requirements.

The package has been used in reality for several major projects.

The raison d’étre of the package was the trouble the author found in maintaining many differ-
ent macro packages; the chief problems being different user interfaces, and propagating im-
provements in one package into the others. This document is typeset using the system it de-
scribes.

There is no support for nroff (1), and the system is designed with POSTSCRIPT output as-
sumed.

The -U option of groff is required as the .sy and .open requests are used in an unavoidable
way.
Directories
Several strings are defined to assist locating files in the system:

MARKUP-DIR where the installed macro packages and classes are held;
EPS-DIR where EPS files are held;
IST-DIR where index style files are held.

./Intro.mkp -3- [§1-81.1]

The Markup Formatting System —markup

1.1.1 Conventions

There are some points which should be noted when creating text for the markup system:

« Blank lines may be used freely to improve readability of the source, as they are ignored
except where otherwise stated.

« There are as a matter of principle no default units for length values (vertical and horizon-
tal sizes, distances and position). Units must be used. It is assumed the user has enough
familiarity with basic troff (1) to know what these are.

1.1.2 Commands

The following is the command to load a package. If a package has been loaded already it is not
loaded a second time. The required optional packages should be requested before the .Be-
ginDocument command. Base packages (see below) are loaded on startup.

.UsePackage package [package ...]
This loads each argument package in the order given. Those customised to change some-
thing in another package must be loaded afterwards. A package is loaded once. There
may be as many .UsePackage commands as required.

Some packages are always loaded. These are known as base packages.

Chapter 2
Document Structure

2.1 Overall structure

The document should start with
.DocumentClass <class>

where <class> is one of a number of document styles, such as letter, book, article, etc. It
should come first; in any case no output text is permitted before it.

The user may then incorporate a number of optional packages as required, and adjust any
documented parameters if needed. There should be no printed text in this section, which is
called the preamble.

Then should follow

.BeginDocument
The text of the document
.EndDocument

[§1.1.1-82.1] -4- ./Doc.mkp

—markup The Markup Formatting System

Any text after the . EndDocument command is ignored with a warning.

If the above structure is not adhered to, error messages are generated, or the document will be
malformed.

.DocumentClass class [options]
This invokes the appropriate class package, which determines the overall style of the doc-
ument, and also reads in any additional packages specified as other arguments.

The options argument is reserved for future extensions.

In addition, the base name of the file containing this command is used as the root of auxiliary
tiles with appropriate extensions where required. Thus for example if the input file is
named shares.mkp then the table of contents file would be shares.toc. The other aux-
iliary files currently used are the cross-reference file, with extension .ref, and the index
files, with extensions .1dx, .ind, .11g.

.BeginDocument
This command must come before any output text. All that may precede it are definitions,
including changing any of the standard settings. If any printed text occurs here a warning
is issued. No settings, such as paper size, point size etc., are actually made until this com-
mand is executed.

.EndDocument
This command must come at the end of the document. Such actions as performing checks
that all structures started are also finished, outputting left-over floats, index pages if re-
quired and so on are done here. Any text after this will be ignored, with a warning.

2.2 The “base” Packages

Each package is in a file of its own, in a subdirectory MARKUP of the directory where groff
macros are usually found. Each file has an extension .pkg. The packages in Table 1 on
this page are automatically included when -markup is used (other packages are not). For the
benefit of those who wish to write new packages, each packages’s internal names begin either
with the package name, or a related name shown in the table; users should avoid redefining
these names.

Chapter 3
Document Sizes

This package controls the size and spacing of many global items in the document. Its principal
use is to set paper and page sizes, but it also sets some values which are related to these. Most
of it is for internal use, but there are a few user-level commands.

./Sizes.mkp -5- [§2.1-83]

The Markup Formatting System

.AdPaper

Sets the size of the sheet to be used as A4. This is the default.

.A5Paper

Package Brief description Reserved prefix
Document structure
Doc Overall document structure doc-
Boxes Draw boxes round text, etc. box-
Colour Add colour. colr-
Contents Generate table of contents cont-
Crossref ~ Cross referencing cref-
Date Format dates date-
Display Displayed material disp-
Div Diversion management div-
Dotted Fill line with dots dot-
Drop Dropped capitals package drop-
Egqn Support for equations eqn-
Env Environment definitions env-
Error Error and warning messages error-
Fonts Font and font-style control font-
Headings Headings and subheadings for sections head-
Index Generate index entries idx-
Insert Put rectangular insertions into text insert-
Keep Floating and other keeps keep-
Lists Enumerated and itemised lists list-
Page Page headers and footers page-
Para Paragraphs and indented sections para-
Pics Include pictorial material pic-
Predef Generally useful strings pre-
Sizes Sets sizes for paper and point size size-
Space Controls spacing (internal use) space-
Stack Controls nesting (internal use) stack-
Strings String manipulation str-
Tbl Support for tables tbl-
Twocol Invoke two-column mode mcol-
Verb Typeset verbatim text verb-

Table 1

Sets the sheet size to be A5.
Other paper sizes are not yet defined.

—markup

.SetPointSize size
Sets the overall document text point size to be size, which must be one of 10, 11 or 12.
The default is 12-point, as this package is used principally with POSTSCRIPT output,
whose font design size seems to be universally 12-point.

The paper and point sizes combine to set suitable parameters. Currently only the combina-
tions (A4, 10- and 12-point), (A5, 10- and 12-point) are defined. They were defined with the ap-
pearance of family URWPalTladioL (similar to Palatino) in mind.

./markup.mkp

—markup The Markup Formatting System

Chapter 4
Document Units

4.1 Page Control Package

This package supplies commands for page headers and footers. The header is the stuff inserted
automatically at the top of each page, additional to the user’s text. Similarly a footer is inserted
at the bottom.

41.1 Header styles

The header style can be blank, empty (i.e. no space) or have one line of text. The header style
is defined by a string variable page-opt which is set to the standard value after each header
has been completed. The allowable values are:

blank The header is the usual width, but with nothing printed;
empty It is of zero width (starting at the top paper margin);

ord The header is normal. The normal header consists of one line of text, in a three-part title
style, the parts of which are determined by string variables. These can be set by the user,
or the whole line can be done differently, as it is done by a command.

Anything other than normal must be set for each page.

41.2 Commands

.SetPageHeader name

.SetPageFooter name
These set the macros to print the header and footer contents; the name argument is the
name of the command to be installed.

.SetFooterOpt style [dist]
This controls the style and width of the page footer on the current page. The style is reset
to ord at the start of each page. The available styles are:

ord The footer style is set to ordinary, with the footer title printed. In this case the argu-
ment dist is added to the vertical position where the footer is sprung (it may be neg-
ative). The default values are ord 0.

blank The footer is blank, with dist as the width: it must be positive — the minimum
possible is is 1 (one unit of device resolution), 1V.

.HideFooter
This removes the page footer; nothing will be printed at the bottom of the page. Useful in
a number of circumstances — e.g. when a page has displayed material or has to be left
completely blank.

.RevealFooter
The footer is set to normal, although in future it may be set to the footer style prevailing at
the last .Hidefooter.

./Page.mkp -7- [§4-§4.1.2]

The Markup Formatting System —markup

The use of these commands is deprecated, and if there is a better way it will become docu-
mented.

.NewPage [args]
Starts a new page. It should be used only at the end of a completed section. By default it
causes a break. The arguments come in any order, and may be

nobreak Do not cause a break.

number Number pages from this one starting at number. number may be relative, and must
be decimal.

.DoublePageSpread
If this is placed on a page, the next page will space after the heading to the corresponding
position. Usually used on an even-numbered page after a major heading to even the top
of text on opposing pages.

.RunningHeader name
Defines name to be the name of a string to be part of the running header; it is placed in the
left or right part of the three-part title. The string is defined using the .ds mechanism of
troff . Since it is up to a class to make use of this, this is probably not the appropriate place
to have this command. By default it is not used.

.BeginFullPage

.EndFullpage
These delimit a segment of text starting on a new page (if the current one is not empty),
with no headers or footers, and with the full paper width available. A new environment is
used. It is normally used for specially set or displayed material, such as including a
whole-page picture. .EndFullPage restores the environment, but does not start a new
page automatically, nor is the footer restored until the next page.

.OneSided
If a call of this is made then left and right pages are treated the same.

4.2 Section Headings

This package supplies numbered, unnumbered and centred headings for sections of a docu-
ment. The naming convention is that Section in a name is a numbered section, and is never
centred or right-adjusted; Heading in a name means an unnumbered heading, which will be
centred if the name additionally ends in C, or right adjusted if the name ends in R. Any of
these may be preceded by a number of prefixes Sub to denote subsections or subheadings. The
current defined is 2, giving three levels.

The other convention is that each argument is on a separate line; thus arguments which con-
tain spaces must be enclosed in quotes. For example:

This is a two-line
right-adjusted subsubheading

is generated by

.SubSubHeadingR "This is a two-line" "right-adjusted subsubheading"

[§4.1.2-§4.2] -8- ./Headings.mkp

—markup The Markup Formatting System

421 Chapters

This package has a rudimentary chapter heading command .Chapter. This automatically in-
creases the number of section levels, by adding an extra one at the start. Numbered sections
are displayed with the chapter number prepended. The first .Chapter must precede any of
the . [Sub]Section commands.

4.2.2 Section ranges

If the string register head-ranges is defined, then the default right page footer contains the
range of the numbered (sub)sections appearing on that page.

4.2.3 Placing headings in the contents

Sections and headings can be entered into a table of contents automatically by using the num-
ber register head-contents, as in

.nr head-contents 0-2

The first argument of a section heading is placed in the table of contents, provided its level is at
least that of the absolute value of this number register. If its value is positive, unnumbered
headings are placed there too. The top level is numbered 1. The default value of this register is
zero. See the Contents package on page 26.

424 Appendices

If the command .Appendix is used at the top level (at . Section or .Chapter level), then the
top-level numbering is started at A then B and so on. The title style is the same as for the ordi-
nary top-level (if chapters are used, the word Chapter is replaced by Append1ix).

4.2.5 Redefine headings package

If this small optional package (HeadRedef . pkg) is included, all the sectioning commands are
redefined so that if the first argument is -c then the first line of the heading is placed in the ta-
ble of contents.

4.3 Paragraphs
4.3.1 Paragraphing Commands

This package defines commands for paragraphing and simple displays, such as paragraphs
with hanging tags, and indented sections. More sophisticated requirements are met by the
Display and List packages.

.Para [left]
Starts a new paragraph. If the optional argument Teft is given, then it will be a non-in-
dented paragraph. If the optional argument is a number then the indentation will be that
amount.

JIP [tag [width] 1]

JIPx [tag [width] 1]
This starts an indented paragraph. If one argument is given, then it is used as a hanging
tag for the paragraph. If there is no room, the paragraph will start on the next line. If a
second argument is given, this is the width of the indent, and will stay in force until a

./Para.mkp -9- [§4.2.1-§4.3.1]

The Markup Formatting System —markup

sequence of .IP[x] commands is terminated by an ordinary .Para command, or one of
the sectioning or heading commands is given. The default is restored at the end of the se-
quence (e.g. at .Para). .IPxisidentical to . IP but omits the space before the paragraph.
.TP [width]
.TPx [width]
Have the same effect as . IP and . IPXx respectively, but the tag is the following line and the
optional argument is the indent width.
.RS [Tmarg [rmarg]]
Starts a relatively indented section, with left and right indents which are given by the
Imarg and rmarg arguments respectively. There are defaults.
.RE
Ends a relatively indented section. Relatively indented sections may be nested.

4.3.2 Default parameters

These are all number registers.

ParaDefaultTagWidth
the default indent for . IP and .TP.

ParaIndent
the indentation of indented (ordinary) paragraphs.

ParaRelIndent
the default left indent of relatively indented sections. The default right indent is 0.

ParaSep
the spacing between paragraphs (of all kinds).

4.4 Font Control Package

All the font-style setting commands take 0, 1, 2 or 3 arguments. The effect of the differing
number of arguments is:

0 The style is set globally (and nested). It is cancelled by the .P command.

1 The argument is set in the style.

2 The first is set in the style and the second is appended in the prevailing style, with no sep-
arating space.

3 The second is in the specified style, with the first and third prefixed and suffixed in the
prevailing style.

Within each part, fonts may be changed, provided each such change is done as
\f[font]text\f[] where font is the font or style and text is the text to be set in the new
font. Note that such changes may not be nested.

R[alb[c]l]]

Sets style roman, i.e. normal text face.

Ilalbl[c]lll
Sets style italic.

BLalb[c]Il]
Sets style bold.

[§4.3.1-84.4] -10- ./Fonts.mkp

—markup The Markup Formatting System

BI [alb[c]]]
Sets style bold italic.

W lalbl[c]ll]
Sets text in a fixed-width font. The font currently used is LucidaSans-Typewriter, if it
can be found, otherwise Courier. With this choice, the text is set slightly smaller, as the
x-height of this face is quite large.

CAL[al[b[c]ll]
Sets text in a calligraphic font. The default face is ZapfChanceryMediumlItalic, a fancy font,
too commonly used but universally available. If the change is in-line, the text is set larger,
as this font is quite a small one; the use is usually purely for effect. This command is also
called .ZC for backwards compatibility (this alias may disappear).

. P This command returns to the previous style or font. Do not use the command R for this.

SClalbl[cll]
Sets in small caps. This is often done by reducing the size slightly, but here it is done by
reducing the height of the small-caps letters — a “fake small caps” style. For example the
word SMALLCAPS is obtained by typing .SC SmallCaps. If expert fonts with real small
caps are available, this can be redefined to use them.

Since SC is not a font-face, the style cannot be set globally.

-MakeSC name text
This defines a string named name to be the small-caps version of the text. This is more
efficient for frequently occurring words in small caps, such as acronyms. The size used is
that at the time of use of the defined string, not at the time of definition.

.SwitchFamily family
This changes to a new typeface family, saving the previous in a fully nestable fashion.

.RestoreFamily
This sets the family to that in force before the matching . SwitchFamily.

These two commands will probably move to another package.

.TheFamily
This command interpolates the name of the font family used for the whole document.
Currently it works only for POSTSCRIPT, or for the devices ascii or Tatinl, where it
gives the device name. WARNING: this may be replaced by a better method. For example,
the installation may prefer to have font names Times, Garamond, and so on, as long font
names are allowed

4.4.1 Settable parameters

The fixed-width typeface for the .CW command can be over-ridden by using .ds font-tt
faceand .ds font-tt-size numwhere face is the (usually) Roman face of the appropriate
font family, and num is the percentage size of the font (or empty for its normal size). The calli-
graphic font can be changed by defining .ds font-cal face where face is a suitable font
(calligraphic fonts usually come in one style).

4.5 The Lucida Fonts Package

The Lucida collection contains a wide variety of faces which work well together, as they are
based on a common style. It utilises a family called “Lucida”. The collection contains some ex-
pert fonts. Although most of the faces are a commercial product, it was for the author an

./Lucida.mkp -11- [§4.4-§4.5]

The Markup Formatting System

—markup

exercise in extending the range of styles that this collection provides, beyond the traditional R,

I, B, BI styles of troff.

Several of the commands in the Fonts package are redefined in order to make use of the va-

riety of faces. True small caps are available.

4.51 The Defined Styles

Style Description Font
Ordinary styles
R Roman LucidaBright
I Italic LucidaBright-Italic
B Bold LucidaBright-Demi
BI Bold italic LucidaBright-Demiltalic
Extra styles
0 Oblique (a slanted variation of Roman) LucidaBright-Oblique
SC Small caps (includes old-style digits) LucidaBrightSmallcaps
SCB Small caps bold (includes old-style digits) = LucidaBrightSmallcaps-Demi
Sans Serif group
SR Roman Sans LucidaSans
SI Italic Sans LucidaSans-Italic
SB Bold Sans LucidaSans-Demi
SEB Extra Bold Sans LucidaSans-Bold
SBI Bold italic Sans LucidaSans-Demiltalic
SEBI Extra bold italic Sans LucidaSans-Boldltalic
Fixed Width, serif
TSR Fixed width Roman, serif LucidaSans-Typewriter
TSI Fixed width italic, serif LucidaSans-TypewriterOblique
TSB Fixed width Bold, serif LucidaSans-TypewriterBold
TSBI Fixed width bold italic, serif LucidaSans-TypewriterBoldOblique
Fixed Width, Sans-serif
TR tixed width roman, sans LucidaTypewriter
TI Fixed width italic, sans LucidaTypewriterOblique
B fixed width bold, sans LucidaTypewriterBold
TBI tixed width bold italic, sans LucidaTypewriterBoldOblique
Special fonts for effect
CAL Calligraphic LucidaCalligraphy-Italic
HAND Handwriting (italic) LucidaHandwriting-Italic
BK Black letter LucidaBlackletter
Informal, casual text
CASR Casual roman (an informal face) LucidaCasual
CASI Casual italic LucidaCasual-Italic

For each style X there is a corresponding command . X which sets the style as the .R command.

[§4.5-§4.5.1] 12—

./markup.mkp

—markup The Markup Formatting System

4.6 The Predefined Strings Package

This package simply defines some strings String Printed
for user convenience. They are shown in bullet .
the accompanying table. dots .
pound £
pounds £
TeX TeX
postscript POSTSCRIPT

Chapter 5
Presentations and Displays

51 Two column package

This package enables two-column mode to be used. The two column mode may be started and
finished anywhere; the end of two-column mode produces balanced columns (unlike most
other two-column mode packages in troff).

This package uses some global values from the Sizes package.

5.1.1 Commands
. TwoColumn
Finish off single column mode and start two-column mode.

.OneColumn
End two-column mode and start one-column mode. If the amount of two column material
does not fill the rest of the page, it will be split into two roughly equal columns. The result
is not perfect, but consideration is being given to ways of improving it. The column bal-
ancing does work if there are no additional interline spaces in the two-column text.

5.2 Support for tables

The tbl preprocessor may be used to format tables in a manner described in the thl documenta-
tion. Tables are delimited by the commands . TS and . TE.

Boxed tables are a problem if there is a possibility that they may be split across a page. Some
solutions are these:

« If the table is small enough to fit on a page, then the Keep package may be used.

./Tbl.mkp -13- [§4.6-85.2]

The Markup Formatting System —markup

« If the table is too large, then this package offers support for multi-paged tables, which
may also be boxed. It is good practice to arrange for a multi-paged table to have a run-
ning header. This package plagiarises the -ms package in its method of doing this, by di-
recting the first 1 or more formatted table entries to be used as the header at the start of
the table on each page. The user should arrange for the header to be formatted as if it
were part of the table, simply by writing it as if it were the initial part of the table. After
the lines constituting the header put the command .TH. The part of the table preceding
this will be saved and used for each page. It is also necessary to indicate to the package
that this is to be done; the . TS command must have the single argument H.

Warning: if a table with a header is boxed, then the use of the nokeep option with formatting
options will cause the box to be misplaced when there is extra space inserted before or after the
end of the header. This is an artefact of gtbl.

Note that in this package no extra space is inserted before and after the table; that is the re-
sponsibility of the user or the class.

5.2.1 Commands

IS [H]
Start the table. The H argument indicates that the part of the table up to . TH is used as a
header for multi-paged tables.

.TH
This command indicates that the previously formatted part of the table is to be used as a
header for the table on each page it spreads across. The H option to .TS must have been
given.

.TE
End the table.

T&
Change the table format mid-stream. This is done entirely by the tbl preprocessor, and
nothing extra is done by this package. It is here merely to avoid spurious warnings.

5.3 Support for equations

The eqn preprocessor may be used to format equations either inline or displayed. This package
adds some features to displayed equations, which lie between the commands .EQ and .EN.
See the documentation of eqn(1) for details of the eqn language.

5.3.1 Commands

.EQ
Start a displayed equation. Any arguments are ignored.

.EN
Finish a displayed equation, and do layout according to the specified style. A warning is
given if the number (if any) does not fit the space. Caveat: Some styles may fail for subse-
quent equations in a mark-lineup sequence, as egqn(l) apparently makes equations using
lineup the same width as the one using mark.

.EquationStyle args ...
This command sets the style of equation display. Its arguments have the form

[§5.2-§5.3.1] -14- ./Eqn.mkp

—markup

-key value

The Markup Formatting System

The arguments can be in any order. Any key that is omitted leaves its previous value un-
changed. The keys are as follows:

Key Type
-pre number
-post number
-lab string
-side string

-align string
-indent number

Description
Space before equation
Space after equation
The macro to generate a number or label
The side on which equation is numbered (left, right)
The position of the equation (left, indent, right, centre)
The amount of indenting (with -align indent)

Default
0

0

null
right

left

0

The Tab macro must assign the equation number or label to the string register eqn-num.

5.4 The Display Package
This package supports the printing of displayed material. Displays may be nested.

5.41 Commands

.BeginDisplay name [caption]

.EndDisplay name

These commands delimit a segment of text which is to be “displayed”. The style of dis-
play is given by the argument name, and it will be followed by the caption caption (if

given).

Blank lines are not ignored in displays.

A few display styles are predefined, but it is easy to define new ones.

.DefineDisplay name params ...
This defines a new display called name which can be used as the target of .{Be-
gin|End}Display. There are 11 parameters:

Nello BN Be)UNO) BN NNEV RN S Iy

10
11

The space before the display

The space after the display

Left indent

Right indent

If filling to be on (1) or off (0)

Font or style (string)

Make vertical blank space this amount
The tab stop (if used) — all the same

If text to be centred (0), right- (1) or left-adjusted (1)

The pointsize (may be relative)
The vertical spacing (may be relative)

Note that if tabs, ps and vs are the empty string they will not be changed.

5.4.2 Predefined displays

These three are currently defined; with usage, more will likely follow.

Text The text is printed in a fixed-width font, is unfilled, and slightly indented on the left.
There is a little preceding and following space. In addition, vertical blank space is printed
(unlike the rest of this system), although one or more consecutive blank lines is displayed

as a half-line.

./Display.mkp

~15-

[§5.3.1-§5.4.2]

The Markup Formatting System —markup

This is useful for preformatted ASCII or LATINI text.

Program This is similar to Text, but also sets tabs at intervals for displaying programs in-
dented with tabs.

Emph The text is printed in an emphasised font, has a little space on all four sides, and is filled.
Useful for, say, a quotation from an important document or speech.

5.5 The List package

This is useful for generating numbered and tagged lists, which may be nested. Each list is in-
dented relative to the containing list. A list has several properties: the indent, the width of the
label or tag, the distance separating the tag from the indented text, and several vertical space
separating distances.

There are two kinds of lists: enumerated, where the tags are an automatically incremented
number sequence; and itemised, where the tags are a default string or user-specified.
.BeginItemise [args]

.EndItemise
These delimit a list whose tags are fixed strings, normally a bullet. This type of list may be
nested to depth 3, the default tags varying with the depth.

For the meaning of args see .BeginList.

.BeginEnumerate [args]

.EndEnumerate
These commands delimit a section of text with automatically numbered items. If one of
these environments is nested inside another, a new set of numbers is started. The style of
number printing changes: the outermost is roman numbering, then lower case letters, and
SO on.

For the meaning of args see .BeginList.

JItem [-] [string]
This starts off a new item in the list, and generates the tag.

In an itemised list, the — must be omitted, and the optional string replaces the default
tag.

In an enumerated list, the string is appended to the number, and If the first argument is
a single ascii hyphen (-) then the number is not advanced. If you need — as an appendage
in an enumerated list, use \&-.

It is safe to use font changes in the tag of Item, so long as they are not nested. The recom-
mended method is using \f[I]...\f[], for example.

Jtemx [-] [string]
This is the same as . Item, but the inter-item spacing is suppressed.

.BeginList name

.EndList name
These delimit a list environment called name. It is an error if the name on an .EndList
command does not match a .BeginList in a nested fashion. How to define such a list is
documented below. Meanwhile note that the other list styles are applications of this one.

[§5.4.2-8§5.5] -16 - ./Lists.mkp

—markup The Markup Formatting System

5.5.1 Arguments

The args option is a list of options of the form -opt [val]. Each option changes one of
the default values for the list. They may be in any order.

Option Number of Type Meaning
arguments
-ts 1 number Space before list
-is 1 number Space between items
-w 1 number Width of space for inserting tag
-sep 1 number Separation between tag and text
-e 0 - Make the list an enumerated list
-tag 1 string The default tag (number format for enum list)
-pre 1 string String inserted before tag
-post 1 string String appended to tag
-bs 1 number Space after list
-B 0 - Break to a new line if tag is too wide
-N 0 - The tag may be taken from the next line.

The —N option causes the tag to be taken from the next line only for an itemised list, and the ar-
gument to . Itemis empty.

5.5.2 Defining a new list type

To define a list whose name is for example ZIP, define a string 1ist-params-ZIP whose
value is the space-separated concatenation of the values given for the first 9 arguments in the
above table — as if they were the arguments to a user-defined command. For the —e item, use
0 for an itemised list, 1 for an enumerated list. The commands .{Begin|End}List ZIP are
then available. The —N and -B facilities still have to be given as arguments to .BeginList.

5.5.3 Special lists
There are several extra examples of the list style:

Nul1 This is an itemised list in which all the properties are zero or empty. In principle all the
other lists could be defined in terms of this, although currently the method described
above is used.

Bold The tags are in a bold font.
FixedWidth The tags are in a constant-width font.

5.5.4 Independent numbering

.SetCounter name [num]
This command is provided for cases where the .BeginEnumerate command is not appro-
priate; e.g. for entries in a table. It sets two strings name and name- which on subsequent
uses will display the numbers 1, 2, name- displays only the most recent number. If
the num argument is given, the numbering will start at that. Note: for use in a table it is
necessary to use it twice: before the start of the table, and at the beginning of the table
data.

.SkipCounter name num
This advances the value of a counter defined by .SetCounter by the amount num, with-
out generating any output.

./Wide.mkp 17— [§5.5.1-§5.5.4]

The Markup Formatting System —markup

5.6 The Wide paper package

This package simply redefines the text and margins to increase the widths of text and margins
to make more use of the paper area. It is designed for those who either do not like to destroy
trees or who need to see as much as possible on one sheet.

Chapter 6
Utilities

6.1 The Space Package

The . sp command in troff has two uses:
(1) To leave an amount of vertical space (or remove it); and
(2) To move to a position on the page (used with the | operator).

As they are so different, this package distinguishes between them. There is an advantage to
the use of these, in that they may be redefined in particular environments, e.g. to change the
length of a completed diversion when it is output.

.Space dist
This acts by default identically to the .sp command. If called by ’Space it will not cause
a break. In future, this command may give an amount of space which may stretch or
shrink to improve page layout, e.g. to avoid ragged bottoms.

.ExtraSpace num
This commmand is for the user who needs extra space inserted. The space will not shrink
or stretch. Its most likely use is in the final tuning of a finished document.

.Position dist
This moves to the absolute position dist on the page. It does not cause a break.

6.1.1 Filling Modes

These commands are documented here for convenience.

.Fi110ff

.Fi110n
There commands should occur in matched pairs (which can be nested). .Fi110ff turns
off filling, whereas . Fi110n restores the filling mode prior to the invocation of its match-
ing .Fi110ff.

[§5.6-86.1.1] -18- ./Date.mkp

—markup The Markup Formatting System

6.2 Date Package
6.21 Commands

There is one command
.DateStrings year month day [dw]

which takes a date in numerical form, and generates a number of strings which may be used to
print the date in a wide variety of formats. The arguments are

year the year. Itis taken literally. Older documents using this package having the year less
than 4 digits will have to be corrected.

month the month, a number from 1 to 12;
day the day of the month, a number from 1 to 31;

dw the day of the week, as a number 1 to 7, with 1 representing Sunday. This argument is
optional; if omitted it will be worked out, but if given it is believed.

The command
.TodaysDate

sets up the strings for today’s date, using the .DateStrings command, and gtroff’s internal
registers.

6.2.2 Defined strings

All names of days and months are in English.

date-month the month name in full, e.g. February
date-smonth the short name of the month, e.g. Mar
date-year the year (exactly as given);

date-daynum the day of the month as a 1- or 2-digit string;
date-dayname the name of the day in full, e.g. Wednesday;
date-sdayname the short name of the day, e.g. Wed;

date-suf the ordinal suffix of the day number e.g. rd for 23rd;
LongDate example: Wednesday 18th November 2009
ShortDate example: Wed 18th Nov, 2009

PlainDate example: 18-Nov-2009

6.3 String Manipulation

This package has some string manipulation commands. In some cases the name of these com-
mands is not in the convention of the —-markup system, but are in lower case, to reflect the simi-
larity to certain functions of the C-language library.

6.3.1 Commands
.ForEach string command
This command executes command with each character of string in turn as its argument.

.toupper name char
This defines the string name to be the upper-case version of char if appropriate, else sets it
to the empty string.

./Strings.mkp -19- [§6.2-86.3.1]

The Markup Formatting System —markup

.tolower name char
This does the same as toupper but converts to lower-case.

.strchr reg string char
This defines the number register to be the first position in string of the character char,
or —1 if the character does not occur in the string. Strings are indexed from 0.

.strrchr reg string char
This defines the number register to be the last position in string of the character char, or
—1 if the character does not occur in the string.

.basename name string
This sets the string name to be the portion of string with everything up to the last / re-
moved, then everything from the last . removed also.

.StringVal namel name2
This defines stringl to have the value of string2. If this value is undefined the number
register str-err is set to non-zero, no error message is printed.

Chapter 7
Special effects

7.1 Included and Other Pictures

This package imports an illustration and places it at a given point and at a given size. The only
form of file currently dealt with is a POSTSCRIPT file.

Currently the picture must be a POSTSCRIPT EPS file and be properly structured, with a
%%BoundingBox: comment. If the output device is not POSTSCRIPT a box of the right size
and position is drawn instead.

71.1 Commands

.Picture [opts] file [width [height]]
This reads in the file which is assumed to contain a graphic in some known format, and
places it within the output document at a position depending on the opts argument.
There are two groups of options: display and inline; the display options all start on the
next line and leave the current position at the line after the end of the picture. The inline
option leaves the current point the same, regardless of where the picture is drawn. The
display options are:

—C the picture is centred; this is the default.

[§6.3.1-8§7.1.1] -20- ./Pics.mkp

—markup The Markup Formatting System

—-L the picture’s margin is left adjusted;
—R the picture is right adjusted;
—I d the picture is indented by the distance d;

The inline options are:

—TL x y the picture is positioned so that its top left corner is at point (x,y).

The other inline options are similar with TL being replaced by TR (top right), BL (bottom
left) and BR (bottom right). (note: (x,y) is absolute with respect to the top and left margins
of the paper; this may change).

If no option is given, the picture is centred.

If height is not given then the picture will be uniformly scaled and will have width and
height determined by width. If width and height are given then the scaling will possibly be
non-uniform. If width is replaced by —h then the picture is scaled to have height height.

All distances must have units given; although having a superficial resemblance to the PSPIC
command of groff, there are no default units, as a matter of principle.

7.1.2 Support for ‘pic’

.PS height width

.PE
These commands are used to delimit input to pic(1) which generates the width and height
(what does it do with user-supplied values?). In this preliminary version, no extra spacing
or adjustment is done.

7.1.3 Picture packing

The next few commands are a rather rudimentary collection for placing included pictures side
by side on the page. They are aligned so that the bottom edges of the pictures are on the same
baseline. Each picture is also outlined with a thin black line.

.InitPic
This initialises internal storage for holding the picture information.

.SetPic width file
This store up the information for the picture contained in the file file. width is the de-
sired width of the picture (the height is deduced from the contents of the file, using equal
scaling).

.PlacePic
This draws the stored pictures. The left and right margins are flush with the edges of the
line, and they are spaced by equal gaps; there is no check that there are at least two pic-
tures. Afterwards the current position is after the pictures.

7.2 The Verbatim Package

.BeginVerbatim
This starts a section of the input which will be reproduced exactly, with no processing. It
is especially useful for displaying segments of troff code. It is useful in conjunction with a
display or indenting package.

./ Verb.mkp -21- [§71.1-87.2]

The Markup Formatting System —markup

.EndVerbatim
Ends the segment of verbatim text begun with .BeginVerbatim. Warning: if this com-
mand is misspelt, the rest of the document will be wrong.

7.3 The Boxes Package

This package consists of miscellaneous commands to draw boxes, either round text or a word,
or draw a plain box, where, for example a picture could be pasted in to the final document.

7.3.1 Commands

.BeginBox t b 1 rw
Draw a box round the following text, until . EndBox, The text is formatted normally, except
for being slightly narrowed to accommodate the box. The user may supply extra adjust-
ments at the top, bottom left and right (t, b, 1, r arguments), or set the thickness of the
box outline (w argument). The arguments are all optional, but the value 0 for any one of
them will be replaced by the default. the defaults are not changed. The line thickness may
be correct only for the -Tps output, at present. These commands may not be nested.

.EndBox
Terminates the text to be boxed.

.BoxWord word
Draws word inline, with a neat box round it. The box takes into account the letter shapes,
and in general gives a better result than the .BX command of -ms. There is a restriction:
the word may not contain a space. Use \0 instead.

.MakeBox width height
Draw a box at the current position, finishing at the bottom left of the box. It may be used
inside a diversion. If used in a diversion, and the diversion is interpolated, the user has to
space to the bottom of the box, using . Space.

.DefBox [-a] name width height [dx [dy]]
This defines a string name which when interpolated will produce a box of size
widthxheight at the current point, returning to the current point. The box will be
shown dx units to the right of the current point and dy units downwards (defaulting to 0).
If the -a argument is used, the horizontal position is after the box by an extra dx units.

.Cartouche radius width height
This command draws a cartouche shape at the current point. The current point after-
wards is probably not well-defined. A cartouche is a rectangle (of width width and height
height), but the corners are rounded — a quarter circle with radius radius.

.Box width height
This command draws a box downards from the current point, with width width and height
height.

The MakeBox command is probably more satisfactory.

74 The Dotted line package

This package will eventually do various kinds of dotted and dashed lines. Some of these will
be pure troff constructs; others will use the particular facilities of an output device, such as
POSTSCRIPT. A package for constructing “forms” is under consideration, of which this will
be a part.

[§7.2-8§7.4] -22 - ./Dotted.mkp

—markup The Markup Formatting System

.Dotted word [char [space [endstr]]]

This prints the word word on a line by itself, and fills the rest of the line with dots. If the
optional second argument is given, then it is the character to use instead of dots. If the op-
tional third argument is given, then it is the spacing between dots. If the optional fourth
argument is given, then it is the string to print instead of the right hand dot. If any of the
optional arguments are empty, then the default setting is not changed. The default spac-
ing is reasonable. With given settings, different lines filled used this command are guar-
anteed to have the dots lined up (unless things change such as the line length).

It should be noted that the “dot” may in fact be a string.

.SetDotDefaults [char space endstr]
With no arguments, this command sets the standard default “dot” character, spacing, and
tinal character/string for the .Dotted command. With three arguments, it changes the
defaults to the values specified.

7.5 Insert package

This package enables simple rectangular insertions at the right or left of the document text.
This package does not work inside diversions at present, but that is being fixed.

7.5.1 Commands

.BeginInsert [name]

This starts a section of material to be saved for insertion as described above. If the op-
tional argument name is given, then it will be saved using
this name. Nofe: in this package the words Teft, right, box
and keep are reserved so cannot be used for names. It is up
to the user to determine the width of the text; as it is processed in its own environment,
which has the standard settings for the document. Line length, etc. may be changed (and
will be restored to standard values on the next use).

.EndInsert
This terminates the material to be inserted. It is stored under the given name (or anony-
mously if no name is given).

.InsertSep top bot side
This specifies the spacing to be used round the insertion, in groff units. These remain set
unless changed. There are default values.

.PlaceInsert left|right [name] [box] [keep]
This places the saved material in a rectangular space on the left or right. The arguments
may be in any order. If the name is not specified then the insertion is defined by the most
recent .BeginInsert without a name. A small amount of space is placed round the ma-
terial (see .InsertSep). The insertion occurs after the line which would contain the
word immediately preceding the command.

This is an example of an insertion
placed on the right of a page.

If the optional argument box is used it indicates only that an addition spacing adjustment
is used. This is advised if the saved material consists only of a box outline, as box horizon-
tals are drawn on the baseline.

If the optional argument keep is used, then the diversion used to store the placed material
is not removed, as it would be normally. It may then be used in another .PlaceInsert
command. To remove the diversion, use .RemoveInsert [name]. WARNING: this

./Insert. mkp -23 - [§7.4-§7.5.1]

The Markup Formatting System —markup

has not yet been implemented.

.CentreHole width height
This leaves a rectangular hole in the text. This command is experimental, and is not ad-
vised if the text is not “dense”, apart from the fact that it would not look good. It is cur-
rently the user’s responsibility to fill the hole, but that should be done by this package in
future (this command may disappear in favour of a new option (centre) to centre
.Placelnsert).

7.6 The Drop Package

This package offers support for various styles of initial dropped capitals.
.Drop word Tines
word. The initial letter is enlarged and dropped into the surrounding text and takes

Tines lines. Currently the initial is both enlarged and stretched upwards. In future the
style may be tunable. Currently it does not work inside a diversion, but that is being fixed.

This is intended for use at the beginning of a non-indented paragraph; word is the first

.Yinit word
This is a customised version of .Drop using the yinit font from TgX (by Yannis Haralam-
bous). The initial letter is set at 10-point in this font, which must be available in POST-
SCRIPT form.

.AugInit word
This is another customised version of .Drop, using the scalable AugsburgInitials illu-
minated capitals font.

7.7 The Colour Package
This package was written before colour was added to troff and will probably change.

This package is a start at adding colour-changing commands. It works only on POSTSCRIPT
output. Colours are specified in red/green/blue components, each in the range [0..1). These
are real numbers; they are handed verbatim to the POSTSCRIPT interpreter.

7.71 Commands

.FiTlwithColour R G B
This draws a rectangle filling the whole page with the colour RGB.

.DefColour name R G B
This defines name to be a string which when interpolated to be
that with the given RGB components. The colour range must be ended (on the same page)
by the string e-c.

.ColourBox R G B width height
This draws a solid rectangle starting and finishing at the current point. The colour is
given by the RGB arguments, and width and height give the dimensions.

[§7.5.1-87.71] —-24 - ./markup.mkp

—markup The Markup Formatting System

Chapter 8
Moving material

8.1 Cross References

This enables references to be made to other parts of a document. Formatting may be required
more than once to obtain all the references correctly.

8.1.1 Defining references

There is one command

.CrossRef name type
This defines the string name to have a value which may be referenced in other parts of the
document. These names and values are stored in a file (with extension .ref) for future
passes.

The argument type says what kind of value is used. Currently those predefined are

P, page.
Use the page number.

s, section.
Use the section number. They may have a number appended, meaning that subsections
only up to that level are used (number not yet implemented).

The user can define new types; all that is required is for the new type (type say) to have a cor-
responding macro

.cref-def-type

which must assign the required value to the string variable cref-val.

The reasons for this indirect approach are: (a) flexibility; (b) in case the material is diverted
(to get the value from the place the diversion is output rather than the current place).

8.1.2 Using references

There are a variety of ways of using references, from simple unadorned values (including in-
n.n

lined values), to fancy as in "this page", "previous page" and so on. There are therefore several
commands for using cross references.

If the name is not defined a warning is displayed, and a square symbol is placed in the text.
If the value is incorrect, a warning is also displayed. The formatting must be re-run to get the
reference correct (sometimes more than once).

.UseCrossRef name

*[UseCrossRefl name]
These insert the value associated with name by .CrossRef into the text. The second is the
inline version of the first.

./ Crossref.mkp -25- [§8-§8.1.2]

The Markup Formatting System —markup

.Ref [pre] name [post]
This is replaced by the value that name refers to (if defined), prefixed by pre if present,
and suffixed by post if present.

.PageRef name [text]
This generates the appropriate one of “page n”; “this page”; “the previous page”; or “the
next page”. text if given is appended (it is usually punctuation).

.SetCrossRef name refname
Defines the string name to have the value of the string refname which should be defined
by one of the commands of this package somewhere in the document.

8.1.3 Deprecated commands

These are commands retained from earlier incarnations of this package, retained for legacy rea-
sons.

.MakeCrossRef Tabel value
This defines the string Tabel to have the value value, and also makes the label available
as a string register for use in other parts of the document. The value supplied is currently
up to the user; a common one is the page number \n[%].

.MakePageRef name
This is the same as .MakeCrossRef, but takes one argument (the name), the value being
the current page number.

8.2 Table of Contents

This package has facilities for collecting information for a table of contents, which is normally
near the beginning of the document. Then it is usually necessary to reformat it (possibly more
than once) to obtain correct page numbers. The table may be elsewhere in the document, the
most common alternative being at the end.

The material to be placed in the contents is stored in a file whose name ends in . toc.

.MakeTocEntry ref entry.
This identifies ref with the string entry which is the one to appear in the table of con-
tents, along with the page number where this command appears. Warnings are issued if
any entry changes; several runs may be required before the page numbers are correct.

.TableOfContents
Table of contents may be created by use of the command where the contents are to be
placed. If this is anywhere other than at the end, the formatting run may have to be re-
peated; warnings are given. There is a simple version supplied with the package, but
classes may dress it up.

8.3 Keeps and Floats

This package enables material to be kept together on one page, by changing page if necessary.
In this initial version, keeps cannot be used within any material which has to be diverted, such
as within two-column mode.

The usual reason for a keep is to print a self-contained item such as a display or table, where
there are no natural text breaks. If an arbitrary text segment is kept, note that there will be
breaks before and after, and there may be partial words in the wrong place.

[§8.1.2-88.3] -26-— ./Keep.mkp

—markup The Markup Formatting System

8.3.1 Commands

.BeginKeep [float]
Starts a section of text to be kept. If the optional argument float is given, then the text to
be kept is stored for insertion wherever room can be found, while normal text processing
continues. The kept material in both cases is output immediately if there is room, and at
the top of the next page otherwise (provided no other keeps have to be output first). With
a non-floated keep, the order of text is unchanged.

.EndKeep
Ends a section of material to be kept.

8.4 The Index package

The Index package is designed to be used in conjunction with the makeindex public domain pro-
gram, and so the conventions are closely tied to those of that program.

During index creation the file root . 1dx is created, where root is the same file basename as is
used for cross references and contents. If the index is also printed in the same run, the file
root.ind and root . 119 are also created. These may all be removed later.

8.4.1 Index creation commands

.Index args
This command simply concatenates its arguments and writes them with page information
to the index file. Spaces are inserted where the user puts a space and also between argu-
ments. Multiple spaces are compressed. If the page number has to stand out, e.g. as for
the main occurrence of an index entry, then end the argument list with |B (for bold em-
phasis) or | I (for italic). The B or I may be replaced by any groff font style or face.

The output has to be post-processed by the program makeindex, and therefore certain charac-
ters are used for special effects:

! the character used to separate subitems;

@ The character used to specify what is printed (as opposed to the item, which is used for
sorting — if they are different);

| The character used to encapsulate page numbers;

(The character used to begin an explicit page range;

) The character used to end an explicit page range;

The “quote” character, used to protect any of the above special characters.

For more details, see the documentation for the makeindex program.

.MakeIndex [style]
This command may be used anywhere after .BeginDocument and acts simply as a mes-
sage to instruct . EndDocument to close the index file, run makeindex and typeset the result.
It is done this way in case of inserted material which may contain index entries, such as
floating keeps.

style
This argument gives the style of the index; there is a default. Currently there is just one
style, markup.

./Index.mkp -27 - [§8.3.1-8§8.4.1]

The Markup Formatting System —markup

If for testing or other reason, it is desired to print the index now, the command .1idx-print
may be used.

Chapter 9
Classes

9.1 Classes

Table 3 on this page lists the classes that so far have been implemented. A later section de-
scribes some example user packages.

Package Brief description Reserved prefix
Article Articles art-
Letter Multiple letters let-
Booklet =~ Handbooks and newsletters bkl-
Table 3

9.2 The Article Class

This is one of the predefined document classes. It’s main features are a title, an abstract, one or
more authors and their institutions. All of these are optional. They should appear just after
.BeginDocument.

9.2.1 Commands

Title
This command takes any number of arguments. Each will be printed centred on a sepa-
rate line as part of the document title. Currently no part of the title appears anywhere else
in the document, but in future it might be available as part of a page header or footer.

.Author name [institution]
An author’s name and institution. There may be several authors, each given by a Author
command.

.EndAuthors [Teft | centre | right] [row | col]
This marks the end of the author list; if not present, the authors will not be displayed. The
arguments specify whether the individual authors have their entries left-, centre- or right-
adjusted, and whether the list of authors is displayed side-by-side (row|col argument) or
one under the other. More authors followed by .EndAuthors may follow. The default
positioning is side-by-side, each centred in its own space.

.BeginAbstract
and

[§8.4.1-§9.2.1] -28 - ./ Article.mkp

—markup The Markup Formatting System

.EndAbstract

together limit an abstract, which will be set in a slightly different way, preceded by a head-
ing “ABSTRACT”.

9.3 The Letter Class

This class is designed to simplify customising a letter style, with its often rather peculiar lay-
out. It is probably best used with a package which pre-customises many of the individual style
settings. There is support for logos and banner headings, multiple letters, default signatory,
postscripts and dates. The overall format of a letter is

.BeginLetter
[.Addressee]
[.Sender]
.Salutation
. (text of Tetter)
.Sign
[.PostScript]
.EndLetter

(more letters)

There are lots of hooks and handles for customising letters; these are not described in the user
documentation, but are provided for those who wish to make a customised letter package.

.BeginLetter

.EndLetter
These delimit a single letter. There may be any number of them in one document. A letter
is started with a banner heading at page 1. If a particular letter requires more than one
page then each except the last has a “turn over” message at the bottom (by default).

.SetDate date
This command sets the string to be placed in the date position to date. If the argument is
today then the date used is “today” — the day that the letter is formatted. It is in the
PlainDate style. If the user wants a different style, then use the Date package. If the ar-
gument is none then the date is omitted. Note: this should be placed before .Sender as
the latter incorporates the current date, which is “today” by default.

.Salutation name
This is obligatory after .BeginLetter, and generates the “Dear ...” at the beginning of
the letter, using the argument name. The .Postscript command is not implemented.
.Sign [n|f|s|-b bye] [name]
This is obligatory after the text of the letter and before .EndLetter. It generates the mes-
sage “Yours sincerely” by default. If one of the arguments is a single letter n, f or s then
the the farewell is none, “faithfully” or “sincerely” respectively. If an argument is -b then
the next argument bye is used as the signing-off phrase. If a name is given, it is placed in
brackets after room for a signature: use this for formal letters.

.LetterExtra
If there is material after the signature, but before .EndLetter, then use this; it completes
the signature and the user can insert any material. A new page or extra space is not in-
serted, such details are up to the requirements of the user.

./ Letter.mkp -29- [§9.2.1-§9.3]

The Markup Formatting System —markup

.Banner
This produces the banner at the top of a letter. The default is a .5 inch blank space.

.Sender name address ...
This may occur either once before the first .BeginLetter, in which case it will be used for
all letters, or it may occur once at most within each letter. It formats the name and address
of the sender (at the top right of the letter, under the banner), followed by the date if speci-
tied. It may have any number or arguments, including none; each is printed on a separate
line.

.SenderName name
This sets a name to be used as the name in .Sign if none is given; use for formal letters
only.

.Addressee [name] add ...
This typesets the name and address of the person to whom the letter is being sent at the
top left, under the banner. It is not obligatory, but should appear after .BeginLetter and
before .Salutation. Each argument is printed on a separate line.

.NoTurn
This suppresses the “turn” message at the foot of all but the last page of a letter. It affects
all subsequent letters if it occurs outside a letter, or only that letter if placed after .Begin-
Letter.

9.4 The Booklet class

This is a class designed for making informal booklets, such as newsletters and handbooks. It is
used mainly with customised packages which manipulate sizes and styles to suit.

9.41 Commands

.TwoPartTitle Tleft right
This command prints a title in two parts, on the left and right respectively, with a horizon-
tal line joining them. Either part may be empty (then the joining line is extended to the
text margin). No additional spacing is inserted by the command.

.Wrap space header pageopt footeropt
This command acts as a “wrapper” for included “raw” article files. It is followed by a
command .so file.

The first page of the file is decorated as follows: If the pageopt argument is “newpage”,

then the article will start on a new page, and the header will be used; it is a name indicat-

ing which of a set of fancy strings is used in the “running header”; these are described in

those packages which use them. This argument may, however, have the special values
empty

There will be no page header but an amount of space at the top of the page can be intro-

duced by the space argument.

blank
There is a blank page header of the standard width.

- There is an ordinary header, but the running header is not changed.

The footeropt can be one of footer or nofooter, indicating that a page footer is required or
not respectively (on the new page, if taken).

[§9.3-§9.4.1] -30- ./Booklet. mkp

—markup The Markup Formatting System

If the space argument is non-zero, then this amount of space is inserted before the article;
usually used between articles on the same page.

.Auth author [date]
This identifies the author of an article (with optional date of article). It is designed to go at
the end of the article.

Chapter 10
Customised packages

Most of these have been done for the author’s own applications, but are available in a separate
document.

Packages of the Booklet Class
10.1 Address labels

This is a subpackage of the Booklet class, and is designed to print addresses on sheets of self-
adhesive labels. The input is a series of addresses, one address line per line, with the following
markup:

1. The address must be preceded by the line
.de Tab-Tabel
2. The address must be followed by the lines

.lab-print
3. The addressee(s) must be first, and be the arguments to the command . 1ab-name — for
example
.lab-name "John" "Mary Smith"
4. The set of addresses must be between the following lines
.lab-begin
.lab-end
These can be done by hand but it it is usually easier to write a script (e.g. for awk(1)) to convert
from whatever address database is used.

A useful string register to set is 1ab-debug. If defined this will cause the label borders to be
drawn.

Note: there is an as-yet untraced bug which causes these outlines to be misplaced on the last
column of the first page only.

.UseLabels make
As the dimensions of self-adhesive brands vary widely, this command is defined to allow
the brand to be selected. If a brand is not known, it is easy enough to define a new brand,

./Labels.mkp -31- [§9.4.1-810.1]

The Markup Formatting System —markup

say a brand xxx. A string called Tab-xxx with 12 numerical values is then defined.

Number of rows of labels;

Number of columns of labels;

Left margin — all makes seem to have same right and left margins;
Right margin;

Top margin — top and bottom margins are usually the same, too;
Bottom margin;

The horizontal distance from one label to the next;

The width of a label;

9. The vertical distance from one label to the one below;

10. The height of a label;

11. The minumum margin allowed on a label around the print;

12. The radius of the rounded corners.

© N O Ul N

See the source of this package for the meaning. Note that the outer labels may overlap the
non-printable area of the medium; this is not yet taken into account.

.UsePrinter printer
This command sets the printable area of the paper for a known printer, and is used be-
cause printers vary widely on how near the edges can be marked. To define a printer, say
xxXx, define the string Tab-xxx to have the following 4 space separated numerical parts:

1. Left unprintable width;

2. Top unprintable width;

3. Length of printable horizontal line;
4. Length of printable vertical line.

Chapter 11
Internals

11.1 The Error Package

This package contains error and warning message commands, which will cause output to the
standard error file.

.Error args ...
This prints its arguments and terminates formatting. The first argument is assumed to be
the name of the command calling it. The file and line number are also printed. If the
number register error-verbose is positive, then a call backtrace is printed if it has the
1-bit set, and if the 2-bit is set then trap positions are printed.

[§10.1-§11.1] -32- ./Error.mkp

—markup The Markup Formatting System

.Warning args ...
This does the same as .Error but does not exit, and the word Error is replaced in the
output by Warning. If the number register error-verbose has the 4-bit set then then ex-
tra diagnostics are produced as for .Error; this should be used with care as the if there
are lots of warnings the diagnostic output will be cluttered.

.SimpleWarning message...
This prints the arguments on standard error, but without the file and line number. The
tirst argument is not treated specially.

11.2 Debugging

This package is mainly for package and class writers who want to print out number register
values.

.Debug [string [reg ... 1 1
This prints a message on standard error, one line per register. The given string is attached
(together with a number) as identification to each value. The registers are given by name.

.debug-print-mac name
This prints the command name in-line in the output text. For example, here is the value of
the command Box at this point in formatting;:

.nr box-boxw \$[1]
.nr box-boxh \$[2]
\D’p 0 \n[box—boxh]u \n[box-boxw]u 0 0 —\n[box—boxh]u —\n[box—boxw]u 0’

11.3 The Stack Package

This simulates a stack for general package use. Numbers and strings use a common stack. It is
intended mainly for class and package authors. Troff has some stacks — the diversion and en-
vironment stacks, but nested items also need a stack, hence this one. It is tested for emptiness
at the end of the document.

.Stackn name
This stacks the value of number register name. Note: the argument is the name, not the
value.

.UnStackn name
This removes a value from the stack and assigns it to number register name.

This will work only if the format assigned to the register is the default decimal digit for-
mat.

.Stacks name
.UnStacks name
These are similar to . Stackn and .UnStackn, but deal with string registers.

.PrintStack
If the stack is not empty, then it is printed on standard error. This is a debugging aid.

11.4 The Environment Package

This package was written before the .evc command was added to troff and will probably
change.

./Env.mkp ~33- [§11.1-§11.4]

The Markup Formatting System —markup

This package builds on troff 's environments to make them more useful, and to supply some er-
ror checking. WARNING: This package is experimental, and although it will not disappear, its
commands may change, when the best ways of using them are discovered.

The basic problem with “raw” environments is that they start with the default troff settings,
which almost never what is required.

.NewEnv name
This defines a new environment, with the given name. The attributes within this environ-
ment are those for the document, not the default troff values. The environment is not en-
tered. It is an error if the named environment already exists.

.RenewEnv name
The existing environment has its attributes restored to the standard values for the docu-
ment; it is not entered.

.CopyEnv name
The named environment must already exist, and will have the the current attributes copied
into it (most of them at any rate).

.BeginEnv name
The named environment is entered; it must already exist.

.EndEnv name
This exits from the current environment to the containing one. It is an error if the current
environment is not the one named.

.BeginStandardEnv

.EndStandardEnv
These commands delimit text where the standard settings may be changed, such as point
size, font, line length, etc. Initially the settings are the standard document settings. After
.EndStandardEny, the previous environment is restored.

11.5 The Diversion Package

The purpose of this package is to give support for diversions to packages which require them.
It is mainly for the authors of packages and classes.

The problem with diversions is that only one diversion trap is allowed. This package allows
the use of several diversion traps within one diversion.

There are no breaks at the start and end of diversions defined in this package; it is the user’s re-
sponsibility to put them where required. Neither is the diversion interpolated. After all uses
of the diversion, it should be removed, as there is a restriction imposed in this package that a
diversion may not have an existing name.

11.5.1 Commands

.BeginDiversion name
This starts a diversion with the given name. There is a restriction in this package that
there must not be an existing diversion also called name, whether defined by this com-
mand or otherwise.

The user should be aware that there may be a partially formed line which may end up in
the diversion. Use some kind of command which finishes off a section (such as .Para), if
this is undesirable.

[§11.4-§11.5.1] _34- ./Div.mkp

—markup The Markup Formatting System

.EndDiversion
Finishes the current diversion. There is no check that it is the same as the one started with
the matching .BeginDiversion as there already is a diversion stack within gtroff. There
is no break, as there are circumstances when that would be the wrong thing to do.

.SetDiversionTrap position name
Sets a trap to be sprung at position within the current diversion. The argument name is
the user’s command to be called.

The trap is appended to a priority queue of traps for the diversion. The trap that is sprung
first is the one nearest the current position. After use, it is removed, and next one set (as only
one can be active at a time).

Acknowledgements

« James Clark, for his brilliant implementation of the troff family of programs, and whose
macro code I have frequently borrowed;

« Leslie Lamport, for inventing LaTeX, the source of many of my ideas.

markup.ind -35- [§11.5.1]

The Markup Formatting System

A

Adpaper, 6
Abpaper, 6

address labels, 31
appendices, 9
Appendix, 9
Augsburglnitials, 24

B

basename, 20
BeginFullPage, 8
BeginInsert, 23
BeginVerbatim, 21
Box, 22

bullet (+), 13

C

Cartouche, 22
Class
Article, 28
Letter, 29
class
Article, 28
Booklet, 30
Letter, 29
Contents, 26
contents, 26
adding to table, 26
printing, 26
Cross references, 25
CrossRef, 25

D

Date Package, 19
date strings
date-daynum, 19
date-month, 19
date-sdayname, 19
date-smonth, 19
date-year, 19
LongDate, 19
PlainDate, 19
ShortDate, 19
Debug package, 33
DefineDisplay, 15

Index

—-36 —

display
Emph, 16
Program, 16
Text, 15
diversions, 34
Documentation
maintenance, 3
tuning packages, 3
user
contained in package, 3
dots (...), 13
Dotted package, 22
DoublePageSpread, 8
Drop package, 24

E

EndDocument
empty stack, 5
finish diversions, 5
finish environments, 5
output floats, 5
print index, 5
EndFullPage, 8
EndInsert, 23
EndKeep, 27
EndVerbatim, 22
Environment package, 33
EPS file, 20
Error package, 32

F

file
extension
idx, 27
idx, .ind, .ilg, 5
ilg, 27
.ind, 27
ref, 5,25
.toc, 26
root name, 5
FillWithColour, 24
font style commands
argument conventions, 10
ForEach, 19

—markup

markup.ind

—markup The Markup Formatting System

G Preliminaries, 3
1 ms

groff. BX, 22

H -ms, 1,3

Haralambous, Yannis, yinit font, 24 N

head-contents, 9

head-ranges, 9 names within packages, 5

heading, alignment, 8 NewTage, 8
HideFooter, 7
(0]
I obsolete commands
index ZC, 11
special effect characters, 27 OneCplumn, 13
index entry OneSided, 8
in floating keep, 27
. P
index style
default, 27 packages
InitPic, 21 base, 5
Insert package, 23 Boxes, 5,22
InsertSep, 23 Colour, 5, 24
IP,9 Contents, 5, 26
IPx, 9 Crossref, 5, 25
Date, 5, 19
K Display, 5, 15
Div, 5
Keep package, 26 Doc, 4, 5
L Dotted, 5, 22
Drop, 5, 24
lab-begin, 31 Env, 5
lab-end, 31 Eqn, 5, 14
lab-label, 31 Error, 5, 32
lab-name, 31 Fonts, 5, 10
lab-print, 31 Headings, 5
labels, address, 31 Index, 5, 27
Letter Insert, 5, 23
customising, 29 Keep, 5, 26
lists Lists, 5, 16
Bold, 17 Page, 5,7
Enumerate, 16 Para, 5,9
FixedWidth, 17 Pics, 5, 20
Itemise, 16 Predef, 5, 13
Null, 17 Sizes, 5
LucidaSans-Typewriter, 11 Space, 18
Strings, 5, 19
M Tbl, 5, 13
makeindex, 27 Twocol, 5,13
—markup Verb, 5, 21

markup.ind

37—

The Markup Formatting System

customised
Labels, 31
Wide, 18
optional
Debug, 33
Headings, 8
HeadRedef, 9
Lucida, 11
system base
Div, 34
Env, 33
Space, 5
Stack, 5, 33
Page package, 7
Para, 9
Pics package, 20
Picture, 20
Placelnsert, 23
PlacePic, 21
POSTSCRIPT, 11, 20, 22, 24
devps, 22
postscript (POSTSCRIPT), 13
pound (£), 13
pounds (£), 13
preamble, 4

R

RE, 10

references, 25
RevealFooter, 7
RS, 10
RunningHeader, 8

S

Section
Cross references package, 25
Document structure, 4
Font control package, 10
Indexing, 27
String manipulation package, 19
Support for equations, 14
Support for tables, 13
The List package, 16
section headings, 8
SetFooterOpt, 7
SetPageFooter, 7
SetPageHeader, 7
SetPic, 21

—markup

SetPointSize, 6

Sizes package, 13

small caps, 11

strchr, 20

strings
bullet (»), 13
dots (...), 13
pound (£), 13
pounds (£), 13
TeX (TgX), 13

StringVal, 20

strrchr, 20

Style parameter
changing, 3

T

tables
boxed, 13
header, 14
multi-paged, 14
TeX (TgX), 13
tolower, 20
toupper, 19
TP, 10
TPx, 10
Twocol package, 13
TwoColumn, 13

U

UseLabels, 31

UsePrinter, 32

User commands
A4Paper, 6
A5Paper, 6
Addressee, 30
Appendix, 9
AugInit, 24
Auth, 31
Author, 28
BI, 11
B, 10
Banner, 30
BeginAbstract, 28
BeginBox, 22
BeginDisplay, 15
BeginDiversion, 34
BeginDocument, 5, 27

markup.ind

—markup

BeginEnumerate, 16
BeginEnv, 34
BeginFullPage, 8
BeginInsert, 23
BeginItemise, 16
BeginKeep, 27
BeginLetter, 29
BeginList, 16
BeginStandardEnv, 34
BeginVerbatim, 21
BoxWord, 22

Box, 22

CAL, 11

Cw, 11
Cartouche, 22
Chapter,9
ColourBox, 24
CopyEny, 34
CrossRef, 25
DateStrings, 19
DefBox, 22
DefColour, 24
DefineDisplay, 15
DocumentClass, 5
Dotted, 23
DoublePageSpread, 8
Drop, 24

EN, 14

EQ, 14
EndAbstract, 29
EndAuthors, 28
EndBox, 22
EndDisplay, 15
EndDiversion, 35
EndDocument, 5, 27
EndEnumerate, 16
EndEnv, 34
EndFul1Page, 8
EndInsert, 23
EndItemise, 16
EndKeep, 27
EndLetter, 29
EndList, 16
EndStandardEnv, 34
EndVerbatim, 22
EquationStyle, 14
Error, 32
ExtraSpace, 18

markup.ind

~39—

The Markup Formatting System

FiT110ff, 18
FiT110n, 18
FiTlwithColour, 24
ForEach, 19
Heading, 8
HideFooter, 7
IP,9

IPx,9

I,10

Index, 27
InitPic, 21
InsertSep, 23
Item, 16
Itemx, 16
LetterExtra, 29
MakeBox, 22
MakeCrossRef, 26
MakeIndex, 27
MakePageRef, 26
MakeSC, 11
MakeTocEntry, 26
NewEnv, 34
NewPage, 8
NoTurn, 30
OneColumn, 13
OneSided, 8
PE, 21

PS, 21

P, 11

PageRef, 26
Para, 9
Picture, 20
PlaceInsert, 23
PlacePic, 21
PlainDate, 29
PrintStack, 33
RE, 10

RS, 10

R, 10

Ref, 26
RenewEnv, 34
RestoreFamily, 11
RevealFooter, 7
RunningHeader, 8
SC, 11
Salutation, 29
Section, 8
SenderName, 30

The Markup Formatting System —markup

Sender, 30 UsePrinter, 32
SetCounter, 17 Warning, 33
SetCrossRef, 26 Wrap, 30
SetDate, 29 Yinit, 24
SetDiversionTrap, 35 basename, 20
SetDotDefaults, 23 debug-print-mac, 33
SetFooterOpt, 7 debug, 33
SetPageFooter, 7 e-c,24
SetPageHeader, 7 idx-print, 28
SetPic, 21 Tab-begin, 31
SetPointSize, 6 lab-end, 31
Sign, 29 Tab-Tabel, 31
SimpleWarning, 33 Tab-name, 31
SkipCounter, 17 Tab-print, 31
Space, 18 strchr, 20
Stackn, 33 strrchr, 20
Stacks, 33 tolower, 20
StringVval, 20 toupper, 19
SwitchFamily, 11
T&, 14 Vv
TE, 14 variables
TH, 14 ParaDefaultTagWidth, 10
TP, 10 Paralndent, 10
$2Xi410 ParaRellndent, 10

’ ParaSep, 10
TableOfContents, 26
TheFamily, 11 Verb package, 21
Title, 28 W
TodaysDate, 19
TwoCoTlumn, 13 Wilson, Denis M., 1
TwoPartTitle, 30
UnStackn, 33 Y
UnStacks, 33 yinit font, by Yannis Haralambous, 24
UseCrossRef1l, 25
UseCrossRef, 25 4
H::L‘,;EE;;’;Z, 29 ZapfChanceryMediumltalic, 11

—40-

